Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 số tự nhiên liên tiếp la x;x+1;x+2
Giả sử x chia hết cho 3 thì => ĐPCM
Giả sử x không chia hết cho 3 tức là x chia 3 dư 1 hoặc 2. Vậy x+1 hoặc x+2 sẽ chia hết cho 3; khi đó 2 số tự nhiên liên tiếp còn lại sẽ có 1 trong 2 số chia hết cho 3.
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
c,
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 .
gọi 3 số đó là a,a+1,a+2(.\(a\in N\))
Khi chia a.(a+1).(a+2) cho 3 sẽ có 3 trường hợp xảy ra:3k, 3k+1, 3k+2 ( \(k\in N\))
+ Nếu a = 3k => a.(a+1).(a+2) chia hết cho 3
+ Nếu a = 3k +1 => a+2=3k+3 chia hết cho 3 => a.(a+1).(a+2) chia hết cho 3
+ Nếu a = 3k +2 => a+1=3k+3 chia hết cho 3 =>a.(a+1).(a+2) chia hết cho 3
\(\Rightarrow\)Từ trên ta thấy với 3k, 3k+1, 3k+2 ( \(k\in N\)) thì sẽ có một số chia hết cho 3
Gọi 3 STN liên tiếp là : a,a+1,a=2(a thuộc N )
Khi chia a cho 3 thì a sẽ có dạng 3k,3k+1,3k+2(k thuộc N )
+ Nếu a=3k thì a : 3 ( thay : cho chia hết )
a+1 :/ 3 ( thay :/ cho ko chia hết )
a+2:/3
+Nếu a=3k+1 thì a:/ 3
a+1 =3k+1+1=3k+2 :/ 3
a+2=3k+2+1= 3k+3:3
+ Nếu a=3k+2 thì a:/3
a=3k+1=3k+1+2=3k+3:3
a=3k+2=3k+2+2=3k+a:/3
Vậy ...................................
Nhớ câu kia cũng tương tự vậy mà làm
b) gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4
=>ĐPCM
a)
gọi 3 số tự liên tiếp đó là a;a+1;a+2
ta có : a+[a+1]+[a+2]
=[a+a+a]+[1+2]
=3a + 3
=3 x [a+1] chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3.
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
CHòi oi bố đăng nhiều thế con die
a, có
b, ko
c, XÉT 3stn liên tiếp: a,a+1,a+2 (a E N) a có dạng: 3k;3k+1;3k+2 (k E N)
d, tương tự c
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
- Gọi a ; a+1 ; a+2 là ba STN liên tíêp chứng minh tích 3 STNLT chia hết cho 6 nghĩa là CM chia hết cho 2 và 3
- a:số chẵn : --> a+1 là số lẻ ; a+2 là số chẵn
--> a.(a+1) là số chẵn --> a(a+1).(a+2) chia hết cho 2
- a:số lẻ : --> a+1 là số chẵn ; a+2 là số lẻ
--> a.(a+1).(a+2) là số chẵn --> a.(a+1).(a+2) chia hết cho 2
Vậy tích 3 STNLT thì chi hết cho 2(1)
1. TRƯỜNG HỢP 1 : a = 3.k
Ta có : a.(a+1).(a+2) = 3.k.(3.k+1).(3.k+2)chia hết cho 3
2. TRƯỜNG HỢP 2 : a = 3.k+1
Ta có : a.(a+1).(a+2) = (3.k+1).(3.k+2).(3.k+3)
= (3.k+1).(3.k+2).3.(k+1) chia hết cho 3
3.TRƯỜNG HỢP 3 : a = 3.k+2
Ta có : a.(a+1).(a+2) = (3.k+2).(3.k3).(3.k+4)
= (3.k+2).(3.k+4).3.(k+1) chia hết cho 3
VẬY TÍCH 3 STNLT THÌ CHIA HẾT CHO 3(2)
Từ (1).(2) --> tích ba STNLT thì chia hết cho
Vào http://olm.vn/hoi-dap/question/4513.html tham khảo nhé!!
Gọi ba số liên tiếp là a;a+1;a+2
TH1: a=3k
=>a+1=3k+1 và a+2=3k+2
=>ĐPCM
TH2: a+1=3k
=>a=3k-1 và a+2=3k+1
=>ĐPCM
TH3: a+2=3k
=>a=3k-2 và a+1=3k-1
=>ĐPCM