K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(x+y+z)^2=x^2+y^2+z^2

=>x^2+y^2+z^2+2(xy+yz+xz)=x^2+y^2+z^2

=>2(xy+yz+xz)=0

=>xy+yz+xz=0

1/x+1/y+1/z

=(xz+yz+xy)/xyz

=0/xyz=0

14 tháng 9 2018

ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)

\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=0\)

=> x + y + z = 0

Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)

             x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz

14 tháng 9 2018

ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)

=> 1/xy + 1/yz + 1/xz = 0

=> x + y + z = 0

Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)

             x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz

31 tháng 12 2015

là câu hỏi tương tự nha bạn

12 tháng 3 2019

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2\Rightarrow xy+yz+zx=0\left(1\right)\)

Đặt xy=a ; yz=b ; xz =c 

=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3}{\left(xyz\right)^3}\)

Xét \(\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=a^3+b^3+c^3\)

mà \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc+3abc\)

\(=\left(a+b+c\right)^3-3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)-3abc+3abc\)

\(=\left(a+b+c\right)^3-3abc\left(a+b+c\right)+3\left(a+b\right)c\left(a+b+c\right)+3abc\)

Mà ta có \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)

=> \(\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=3\left(xyz\right)^2\)

=> \(\frac{\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3}{\left(xyz\right)^3}=\frac{3\left(xyz\right)^2}{\left(xyz\right)^3}=\frac{3}{xyz}\left(dpcm\right)\)

Bạn rút gọn vài bước đi nhé :3 mk trình bày ko hay cho lắm :3 nhớ k giùm mk nha :3

25 tháng 1 2022

giả sử cả 3 số xyz đều nhỏ hơn 1 

=>x+y+z<1+1+1=3

ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3

từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1

21 tháng 2 2020

Xét (1/x+1/y+1/z)^2=1/x^2+1/y^2+1/z^2+2/xy+2/yz+2/xz

=P+2/xy+2/yz+2/xz=P+(2z+2x+2y)/xyz=P+2(x+y+z)/x+y+z=P+2

mà (1/x+1/y+1/z)^2=3

=>p=3-2=1

24 tháng 1 2018

Cái bài này bạn làm đc chưa? Hướng dẫn mk ik. >.<

11 tháng 10 2018

Đề kêu chứng minh gì vậy bạn?