\(x^3+y^3+z^3=3xyz\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xyz-3x^2y-3xy^2\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]\)

\(=0\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

22 tháng 7 2019

2) Có: \(x^3+y^3=\sqrt{\left(x.x^2+y.y^2\right)^2}\le\sqrt{\left(x^2+y^2\right)\left(x^4+y^4\right)}\)

And: \(\sqrt{x^3y^3}=\left(\sqrt{xy}\right)^6\le\left(\frac{x+y}{2}\right)^6=1\)

\(\Rightarrow\)\(x^3y^3\left(x^3+y^3\right)\le\sqrt{x^3y^3}\sqrt{x^3y^3\left(x^2+y^2\right)\left(x^4+y^4\right)}=\sqrt{xy\left(x^2+y^2\right).x^2y^2\left(x^4+y^4\right)}\)

Theo bài 1 thì \(xy\left(x^2+y^2\right)\le2\) do đó theo cách đặt \(x^2=a;y^2=b\) ta cũng có: \(x^2y^2\left(x^4+y^4\right)=ab\left(a^2+b^2\right)\le2\)

Do đó: \(x^3y^3\left(x^3+y^3\right)\le\sqrt{2.2}=2\) ( đpcm ) 

22 tháng 7 2019

\(VT=\frac{x^4}{x^4+3xyzt}+\frac{y^4}{y^4+3xyzt}+\frac{z^4}{z^4+3xyzt}\ge\frac{\left(x^2+y^2+z^2+t^2\right)^2}{x^4+y^4+z^4+t^4+12xyzt}\)

Có: \(4abcd=4\sqrt{a^2b^2.c^2d^2}\le2\left(a^2b^2+c^2d^2\right)\)

Tương tự, ta cũng có: 

\(4abcd\le2\left(a^2c^2+b^2d^2\right)\)

\(4abcd\le2\left(d^2a^2+b^2c^2\right)\)

\(\Rightarrow\)\(VT\ge\frac{\left(x^2+y^2+z^2+t^2\right)^2}{x^4+y^4+z^4+t^4+2\left(xy+yz+zt+tx+yz+zt\right)}=1\) ( đpcm ) 

13 tháng 8 2016

Ta có x√(1-y2)<= (x+ 1 - y2)/2

y√(1-z2)<=  (y+1 - z2)/2

z√(1- x2)<= (z+ 1 - x2)/2

=>x√(1-y2) +y√(1-z2)z+√(1- x2)<=3/2

Đấu đẳng thức xảy ra khi: x2 = 1 - y2

y= 1-z2

z = 1- x2

Cộng vế theo vế ta được điều phải chứng minh

13 tháng 8 2016

Thanks nhiều

AH
Akai Haruma
Giáo viên
25 tháng 5 2019

Lời giải:
Áp dụng BĐT AM-GM ta có:

\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)

\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)

Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Cauchy-Schwarz:

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)

\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)

\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)

Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)

Do đó \(\text{VT}\geq \text{VP}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z=1$


19 tháng 12 2017

x^3+y^3+z^3-3xyz = 0

<=> (x+y+z).(x^2+y^2+z^2-xy-yz-zx) = 0

Mà x+y+z > 0 => x^2+y^2+z^2-xy-yz-zx = 0

<=> 2x^2+2y^2+2z^2-2xy-2yz-2zx = 0

<=> (x-y)^2+(y-z)^2+(z-x)^2 = 0

=> x-y=0;y-z=0;z-x=0

=> P = 0

k mk nha

1 tháng 2 2018

1/x + 1/y + 1/z = 1/3 = 1/x+y+z

<=> xy+yz+zx/xyz = 1/x+y+z

<=> (xy+yz+zx).(x+y+z) = xyz

<=> x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz = xyz

<=> x^2y+xy^2+y^2z+zy^2+z^2x+zx^2+2xyz = 0

<=> (x+y).(y+z).(z+x) = 0

<=> x+y=0 hoặc y+z=0 hoặc z+x = 0

<=> z=3 hoặc x=3 hoặc y=3

=> ĐPCM

Tk mk nha

26 tháng 6 2020

Không mất tính tổng quát giả sử \(z=min\left(x;y;z\right)\)

Từ giả thiết x+y+z=3 => \(3z\le x+y+z\)Do đó \(0\le z\le1\)

Đặt x=1+a; y=1+b; c=1-a-b. Do 0 =<c=<1 nên 0 =< a+b =< 1

Ta có \(\left(x-1\right)^3+\left(y-1\right)^3+\left(z-1\right)^3=a^3+b^3+\left(-a-b\right)^3=-3ab\left(a+b\right)\)

Mặt khác \(\left(a-b\right)^2\ge0\forall a,b\Rightarrow ab\le\frac{\left(a+b\right)^2}{4}\)

\(\Rightarrow ab\left(a+b\right)\le\frac{\left(a+b\right)^2}{4}\le\frac{1}{4}\left(0\le a+b\le1\right)\)

\(\Rightarrow-3ab\left(a+b\right)\ge\frac{-3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

Khi đó \(x=y=\frac{3}{2};z=0\)