K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

P/s : bài này khá khó nên mình thử thôi ! 

Không mất tính tổng quát , ta giả sử : \(a\ge b\ge c\)

Đặt \(M=ab+bc+ca-12\left(a^3+b^3+c^3\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\)

      \(N=a\left(b+c\right)-12\left[a^3+\left(b+c\right)^3\right]\left[a^2\left(b+c\right)^2\right]\)

Ta có : \(ab+ac+bc\ge a\left(b+c\right)\)hay \(a^2b^2+b^2c^2+c^2a^2\le a^2\left(b+c\right)^2\)

\(\Rightarrow M\ge N\)

Tiếp , ta sẽ chứng minh \(N\ge0\)

\(\Leftrightarrow a\left(b+c\right)-12\left[a^3+\left(b+c\right)^3\right]\left[a^2\left(b+c\right)^2\right]\ge0\)

\(\Leftrightarrow a\left(b+c\right)\left\{1-12a\left(b+c\right)\left[a^3+\left(b+c\right)^3\right]\right\}\ge0\)

\(\Leftrightarrow1-12a\left(b+c\right)\left[a^3\left(b+c\right)^3\right]\ge0\)

\(\Leftrightarrow1-12a\left(b+c\right)\left[\left(a+b+c\right)^3-3a\left(b+c\right)\left(a+b+c\right)\right]\ge0\)

\(\Leftrightarrow1-12a\left(b+c\right)\left[1-3a\left(b+c\right)\right]\ge0\left(1\right)\)

Đặt x = a ; y = b + c ta có : \(x+y=1\Rightarrow xy\le\frac{1}{4}\)

Theo bất đẳng thức AM - GM , ta có :

\(12xy\left(1-3xy\right)\le\frac{1}{4}.12xy\left(4-12xy\right)\le\frac{1}{4}\left(\frac{12xy+4-12xy}{2}\right)^2=1\)

=> Bất đẳng thức ( 1 ) luôn đúng 

\(\Rightarrow N\ge0\)

Vậy \(M\ge0\)\(\Leftrightarrow ab+bc+ca\ge12\left(a^3+b^3+c^3\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Đẳng thức xảy ra với bộ \(\left(\frac{3+\sqrt{3}}{6};\frac{3-\sqrt{3}}{6};0\right)\)và các hoán vị của chúng .

12 tháng 11 2019

WLOG: \(c=min\left\{a,b,c\right\}\)

Let \(p=a+b+c;ab+bc+ca=q;abc=r\) so p = 1; \(r\ge0\)and \(3\ge q\ge ab\left(\text{vì }c\ge0\right)\)

Need: \(q\ge12\left(p^3-3pq+3r\right)\left(q^2-2pr\right)\)

Have: \(VP=12\left(1-3q+3r\right)\left(q^2-2r\right)=\frac{2}{3}.\left(1-3q+3r\right).18\left(q^2-2r\right)\)

\(\le\frac{1}{6}\left[1-3q+3r+18\left(q^2-2r\right)\right]=\frac{1}{6}\left[18q^2-3q+1-33r\right]\)

\(\le\frac{1}{6}\left(18q^2-3q+1\right)=3q^2-\frac{1}{2}q+\frac{1}{6}\)

Hence, we need to prove: \(q\ge3q^2-\frac{1}{2}q+\frac{1}{6}\)

\(\Leftrightarrow3q^2-\frac{3}{2}q+\frac{1}{6}\le0\Leftrightarrow\frac{1}{6}\le q\le\frac{1}{3}\)

Which it is obvious because:

\(q=ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(q-\frac{1}{6}=ab+bc+ca-\frac{1}{6}=ab+c-\frac{1}{6}+c\left(a+b-1\right)\)\(=ab-\frac{1}{6}+1-\left(a+b\right)-c\left[1-\left(a+b\right)\right]\)

\(=ab-\frac{1}{6}+\left[1-\left(a+b\right)\right]\left(1-c\right)\ge0\)

1: Ta có: \(a^2+b^2+c^2\)

\(=\left(a+b+c\right)^2-2\cdot\left(ab+bc+ca\right)\)

\(=5^2-2\cdot174=-323\)

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo

14 tháng 5 2021

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

  
14 tháng 5 2021

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

10 tháng 7 2017

( ab + bc + ca )^2 = a^2b^2 + b^2c^2 +c^2a^2 + 2abc( a + b + c )

                          =a^2b^2 + b^2c^2 + c^2a^2 + 2abc.0 ( vì a + b + c = 0)

                          =a^2b^2 + b^2c^2 + c^2a^2