Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy cho 3 số dương, ta được:
\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)
\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)
\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)
\(\Rightarrow\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\)\(+\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\)
\(+\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}.3=\frac{9}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(đpcm\right)\)
Áp dụng bđt AM - GM cho 3 số dương x;y;z ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow1\ge3\sqrt[3]{xyz}\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{xyz}\Rightarrow\frac{1}{27}\ge xyz\)
Ta có :\(A=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)=\left(1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}\right)\left(1+\frac{1}{z}\right)\)
\(=1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}+\frac{1}{z}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xyz}\)
\(=1+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{x+y+z}{xyz}+\frac{1}{xyz}\)
\(=1+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{2}{xyz}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng Engel ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}=9\)
Mà \(xyz\le\frac{1}{27}\)\(\Rightarrow A\ge1+9+\frac{2}{\frac{1}{27}}=64\)(đpcm)
\(taco:\)
\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)
\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{2}\ge3\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=\frac{3}{2}\)
\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge3\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=\frac{3}{2}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{3}{2}+\frac{3}{2}+\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(dpcm\right)\)
^^
Mình giải lại bài này cho đầy đủ hơn nhé: (nãy chỉ là hướng dẫn thôi)
Ta sẽ c/m: \(\frac{1}{x^2+x}\ge-\frac{3}{4}x+\frac{5}{4}\) (1).Thật vậy,xét hiệu hai vế,ta có:
\(VT-VP=\frac{\left(3x+4\right)\left(x-1\right)^2}{4\left(x^2+x\right)}\ge0\)
Suy ra \(VT\ge VP\).Vậy (1) đúng.
Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:
\(VT\ge-\frac{3}{4}\left(x+y+z\right)+\frac{5}{4}.3=\frac{3}{2}^{\left(đpcm\right)}\)
\(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\ge\frac{3}{2}\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\right)\ge\frac{3}{2}\)
\(\Rightarrow\)\(\frac{x+y+z}{2}\ge\frac{3}{2}\)
Dấu ''='' chỉ xảy ra khi x=y=z=1
Để mình nghiên cứu giải cách khác
Mình giải áp dụng theo BĐT Nesbit (3 phần tử giống với đề bài )
Mình chứng minh theo Nesbit :
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{a+b+c}{2}\)
\(\Rightarrow\frac{a+b+c}{2}\ge\frac{3}{2}\)
\(\Rightarrow2\left(a+b+c\right)\ge6\)
1 mảnh đất HCN có chu vi là 120m,có chiều rộng bằng \(\frac{3}{5}\)chiều dài.
a Tính diện tích mảnh đất đó
b Người ta chia mảnh vườn thành 2 khu.Biết\(\frac{1}{2}\)
diện tích trồng cây ăn quả bằng \(\frac{2}{5}\)diện tích khu trồng hoa.Tính diện tích mỗi khu.
ĐẶt \(A=\frac{25x}{y+z}+25+\frac{4y}{z+x}+4+\frac{9z}{x+y}+9\)
\(A=\left(x+y+z\right)\left(\frac{25}{y+z}+\frac{4}{z+x}+\frac{9}{x+y}\right)\)
Chứng minh Bất đẳng thức phụ \(\frac{m^2}{a}+\frac{n^2}{b}+\frac{p^2}{c}\ge\frac{\left(m+n+p\right)^2}{a+b+c}\forall a,,b,c>0\)rồi áp dụng, ta có
\(A\ge\left(x+y+z\right)\frac{\left(5+2+3\right)^2}{2\left(x+y+z\right)}=50\)
\(\Rightarrow\frac{25x}{y+z}+\frac{4y}{z+x}+\frac{9z}{x+y}\ge12\forall x,y,z>0\)