Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(b+c\right)\left(a+c\right)\left(a+b\right)\)
\(VT\ge2\sqrt{bc}.2\sqrt{ac}.2\sqrt{ab}=8abc\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Lời giải:
Vì $A+B+C=1$ ta có:
$(1-A)(1-B)(1-C)=(B+C)(C+A)(A+B)$
Áp dụng BĐT AM-GM cho các số dương:
$B+C\geq 2\sqrt{BC}; C+A\geq 2\sqrt{CA}; A+B\geq 2\sqrt{AB}$
$\Rightarrow (1-A)(1-B)(1-C)=(B+C)(C+A)(A+B)\geq 2\sqrt{BC}.2\sqrt{CA}.2\sqrt{AB}$
hay $(1-A)(1-B)(1-C)\geq 8ABC$ (đpcm)
Dấu "=" xảy ra khi $A=B=C=\frac{1}{3}$
Đặt \(abc=k^3\), khi đó tồn tại các số thực dương x,y,z sao cho:
\(a=\frac{ky}{x};b=\frac{kz}{y};c=\frac{kx}{z}\)
Khi đó bất đẳng thức cần chứng minh tương đương:
\(\frac{1}{\frac{ky}{x}\left(\frac{kz}{y}+1\right)}+\frac{1}{\frac{kz}{y}\left(\frac{kx}{z}+1\right)}+\frac{1}{\frac{kx}{z}\left(\frac{ky}{x}+1\right)}\ge\frac{3}{k\left(k+1\right)}\)
Hay \(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\ge\frac{3}{k+1}\)
Áp dụng bất đẳng thức Bunhiacopxki ta được:
\(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\)
\(=\frac{x^2}{x\left(y+kz\right)}+\frac{y^2}{y\left(z+kx\right)}+\frac{z^2}{z\left(x+ky\right)}\ge\frac{\left(x+y+z\right)^2}{x\left(y+kz\right)+y\left(z+kx\right)+z\left(x+ky\right)}\)
\(=\frac{\left(x+y+z\right)^2}{\left(k+1\right)\left(xy+yz+zx\right)}\ge\frac{3}{k+1}\)
Vậy bất đẳng thức được chứng minh, dấu "=" xảy ra khi \(a=b=c\)
Mình trình bày hơi tắt 1 chút nhé
Vì \(a+b+c=1\) nên \(\begin{cases}a+b=1-a\\a+c=1-b\\b+c=1-c\end{cases}\)
Ta có:
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(a+c\right)\left(b+c\right)\ge2\sqrt{ab}.2\sqrt{ac}.2\sqrt{bc}=8abc\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\) (đpcm)
\(-\frac{1}{\sqrt{3}}\le\sqrt{ab+bc+ca}\le\frac{1}{\sqrt{3}}\) chứ ạ?
- Nếu cả 3 số đều ko âm thì \(abc\le\frac{1}{27}\Rightarrow VT< 0\) BĐT luôn đúng
- Nếu 2 trong 3 số không âm thì \(abc\le0\Rightarrow VT< 0\) BĐT luôn đúng
Do đó ta chỉ cần chứng minh trong trường hợp 2 số âm, 1 số dương
Không mất tính tổng quát, giả sử \(\left\{{}\begin{matrix}c>0\\a;b< 0\end{matrix}\right.\) đặt \(\left\{{}\begin{matrix}a=-p\\b=-q\end{matrix}\right.\) \(\Rightarrow p;q;c>0\)
\(\Rightarrow c-p-q=1\Rightarrow c=p+q+1\)
BĐT trở thành: \(8pq\left(p+q\right)-8\le\left[\left(p+q\right)^2+p+q-pq-1\right]^2\)
Đặt \(\left\{{}\begin{matrix}p+q=x>0\\pq=y>0\end{matrix}\right.\) \(\Rightarrow x^2\ge4y\)
Ta cần c/m: \(8y\left(x+1\right)-8\le\left(x^2+x-y-1\right)^2\)
\(\Leftrightarrow x^4+2x^3-2x^2y-x^2-10xy-2x+y^2-6y+9\ge0\)
\(\Leftrightarrow x^4+2x^3-2x^2y-2x^2-10xy-2x+8+\left(y-1\right)^2+\left(x^2-4y\right)\ge0\)
Do \(\left(y-1\right)^2+\left(x^2-4y\right)\ge0\) nên ta chỉ cần chứng minh:
\(x^4+2x^3-2x^2y-2x^2-10xy-2x+8\ge0\)
\(\Leftrightarrow x^4+2x^3-2x^2\left(\frac{x^2}{4}\right)-2x^2-10x\left(\frac{x^2}{4}\right)-2x+8\ge0\)
\(\Leftrightarrow x^4-x^3-4x^2-4x+16\ge0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+3x+4\right)\ge0\) (luôn đúng với \(x>0\))
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Leftrightarrow p=q=1\) hay \(\left(a;b;c\right)=\left(-1;-1;3\right)\) và hoán vị
//Hơi trâu bò :(
+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)
+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)
\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)