K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

\(\Sigma\frac{b+1}{8-\sqrt{a}}\le\Sigma\frac{2\left(b+1\right)}{15-a}=\Sigma\frac{2\left(a+2b+c\right)}{4a+5b+5c}\)(AM-gm)

Đặt \(\left\{\begin{matrix}x=4a+5b+5c\\y=4b+5a+5c\\z=4c+5a+5b\end{matrix}\right.\)suy ra...

19 tháng 1 2017

tiếp đi?

NV
25 tháng 10 2019

\(a+b+c=\frac{1}{abc}\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(P=\sum\frac{1}{\sqrt{1+\frac{1}{x^2}}}=\sum\frac{x}{\sqrt{1+x^2}}=\sum\frac{x}{\sqrt{x^2+xy+yz+zx}}=\sum\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}\)

\(\Rightarrow P\le\frac{1}{2}\sum\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)

19 tháng 2 2022

Ta có:

\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)

Hoàn toàn tương tự ta có:

\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);

\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo bất đẳng thức trên ta được:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Do đó:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{1}{6\left(ab+bc+ca\right)}\)

Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)

22 tháng 8 2020

Trước hết ta chứng minh bất đẳng thức sau \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, bất đẳng thức trên tương đương với \(\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge2ax+2by\Leftrightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

Bất đẳng thức cuối cùng là bất đẳng thức Bunyakovsky nên (*) đúng

Áp dụng bất đẳng thức trên ta có \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{a^2}}\)\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

Ta cần chứng minh  \(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{153}{4}\)

Thật vậy, áp dụng bất đẳng thức Cauchy và chú ý giả thiết \(a+b+c\le\frac{3}{2}\), ta được:\(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}\)\(=\left(a+b+c\right)^2+\frac{81}{16\left(a+b+c\right)^2}+\frac{1215}{16\left(a+b+c\right)^2}\)\(\ge2\sqrt{\left(a+b+c\right)^2.\frac{81}{16\left(a+b+c\right)^2}}+\frac{1215}{16.\frac{9}{4}}=\frac{153}{4}\)

Bất đẳng thức đã được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

23 tháng 11 2019

Ta co:

\(\text{ }\Sigma_{cyc}\frac{1}{a+7b}=\Sigma_{cyc}\frac{1}{a+b+b+...+b}\le\Sigma_{cyc}\frac{1}{64}\left(\frac{1}{a}+\frac{7}{b}\right)=\frac{1}{2}\)

23 tháng 11 2019

minh nghi de dk la \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

 Nen \(\Sigma_{cyc}\frac{1}{64}\left(\frac{1}{a}+\frac{7}{b}\right)=\frac{3}{8}\) duoc

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

$(a^3+1)(a+1)\geq (a^2+1)^2\Rightarrow a^3+1\geq \frac{(a^2+1)^2}{a+1}; a+1\leq \sqrt{2(a^2+1)}$

$\Rightarrow \frac{a^3+1}{b\sqrt{a^2+1}}\geq \frac{\sqrt{(a^2+1)^3}}{b(a+1)}\geq \frac{a^2+1}{\sqrt{2}b}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

$\text{VT}\geq \frac{a^2+1}{\sqrt{2}b}+\frac{b^2+1}{\sqrt{2}c}+\frac{c^2+1}{\sqrt{2}a}$

Bài toán sẽ được chứng minh khi ta chỉ ra được: $\frac{a^2+1}{\sqrt{2}b}+\frac{b^2+1}{\sqrt{2}c}+\frac{c^2+1}{\sqrt{2}a}\geq \sqrt{2}(a+b+c)$

$\Leftrightarrow \frac{a^2+1}{b}+\frac{b^2+1}{c}+\frac{c^2+1}{a}\geq 2(a+b+c)$

$\Leftrightarrow ab^3+bc^3+ca^3+ab+bc+ac\geq 2abc(a+b+c)(*)$

Thật vậy, theo BĐT AM-GM:

$ab^3+bc+a^2b^2c^2\geq 3ab^2c$. Tương tự với $bc^3+ca+a^2b^2c^2\geq 3abc^2; ca^3+ab+a^2b^2c^2\geq 3a^2bc$

Cộng theo vế và thu gọn:

$ab^3+bc^3+ca^3+ab+bc+ac\geq 3abc(a+b+c-abc)(1)$

Mà: $(a+b+c)^3\geq 27abc\geq 27(abc)^3$ (do $abc\leq 1$) nên $a+b+c\geq 3abc(2)$

Từ $(1); (2)\Rightarrow ab^3+bc^3+ca^3+ab+bc+ac\geq 2abc(a+b+c)$. BĐT $(*)$ được chứng minh.

Bài toán hoàn tất.