Cho 3 số thực dương a,b,c thỏa mãn (a+b)(b+c)(c+a)=1. Chứng minh: ab+bc+ca <<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

Trước tiên chứng minh:

9(a+b)(b+c)(c+a)≥8(a+b+c)(ab+bc+ca)

(nhân vô rút gọn chuyển hết sang trái được)

⇔a2b+a2c+b2a+b2c+c2a+c2b−6abc≥0

⇔(a2b−2abc+c2b)+(a2c−2abc+b2c)+(b2a−2abc+c2a)≥0

⇔(a√b−c√b)2+(a√c−b√c)2+(b√a−c√a)2≥0(đúng)

Từ đây ta có:

9(a+b)(b+c)(c+a)≥8(a+b+c)(ab+bc+ca)

⇔ab+bc+ca≤9(a+b)(b+c)(c+a)8(a+b+c)=94

(a+b)+(b+c)+(c+a))⇔ab+bc+ca≤9≤94.33√(a+b)(b+c)(c+a)=94.3=34

Vậy ab+bc+ca≤34

20 tháng 9 2019

Èo, căng thế:

BĐT \(\Leftrightarrow\Sigma\sqrt{\left(a+b\right)\left(a+c\right)}\ge\Sigma a+\Sigma\sqrt{ab}\)(chú ý cái giả thiết a + b  + c = 1)

Thật vậy áp dụng BĐT Bunyakovski: \(\sqrt{\left(a+b\right)\left(a+c\right)}=\sqrt{\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{a}\right)^2+\left(\sqrt{c}\right)^2\right]}\)

\(\ge\sqrt{\left(\sqrt{a^2}+\sqrt{bc}\right)^2}=a+\sqrt{bc}\). Tương tự hai BĐT còn lại và cộng theo vế có ngay đpcm.

Đẳng thức xảy ra khi a = b = c = 1/3

9 tháng 5 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{ab}+\frac{1}{ac}\ge\frac{\left(1+1\right)^2}{ab+ac}=\frac{4}{a\left(b+c\right)}\)(1)

Áp dụng bất đẳng thức AM-GM ta có :

\(a\left(b+c\right)\le\frac{\left(a+b+c\right)^2}{4}=4\Rightarrow\frac{4}{a\left(b+c\right)}\ge1\)(2)

Từ (1) và (2) \(\Rightarrow\frac{1}{ab}+\frac{1}{ac}\ge\frac{4}{a\left(b+c\right)}\ge1\Rightarrow\frac{1}{ab}+\frac{1}{ac}\ge1\left(đpcm\right)\)

Đẳng thức xảy ra <=> a = 2 ; b = c = 1 

1 tháng 9 2018

Ta có:(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc≥(a+b+c)(ab+bc+ca)−19(a+b+c)(ab+bc+ca)(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc≥(a+b+c)(ab+bc+ca)−19(a+b+c)(ab+bc+ca)
⇔1≥89(a+b+c)(ab+bc+ca)⇔1≥89(a+b+c)(ab+bc+ca)
⇔8164≥(a+b+c)2(ab+bc+ca)2≥3(ab+bc+ca)3⇔8164≥(a+b+c)2(ab+bc+ca)2≥3(ab+bc+ca)3
⇔34≥ab+bc+ca⇒⇔34≥ab+bc+ca⇒ đpcm 

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:
Vì $ab+bc+ac=1$ nên:

$a^2+1=a^2+ab+bc+ac=(a+b)(b+c)$

$b^2+1=b^2+ab+bc+ac=(b+a)(b+c)$

$c^2+1=c^2+ab+bc+ac=(c+a)(c+b)$

Do đó, áp dụng BĐT AM-GM:

\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}=\frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)

\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{1}{2}\left(\frac{b+a}{b+a}+\frac{c+b}{c+b}+\frac{a+c}{c+a}\right)=\frac{3}{2}\)

Ta có đpcm

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:
Vì $ab+bc+ac=1$ nên:

$a^2+1=a^2+ab+bc+ac=(a+b)(b+c)$

$b^2+1=b^2+ab+bc+ac=(b+a)(b+c)$

$c^2+1=c^2+ab+bc+ac=(c+a)(c+b)$

Do đó, áp dụng BĐT AM-GM:

\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}=\frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)

\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{1}{2}\left(\frac{b+a}{b+a}+\frac{c+b}{c+b}+\frac{a+c}{c+a}\right)=\frac{3}{2}\)

Ta có đpcm

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)