K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
14 tháng 10 2023
Lời giải:
Do $a\geq 4, b\geq 5, c\geq 6$
$\Rightarrow c^2=90-a^2-b^2\leq 90-4^2-5^2=49$
$\Rightarrow c\leq 7$
$a^2=90-b^2-c^2\leq 90-5^2-6^2=29< 81$
$\Rightarrow a< 9$
$b^2=90-a^2-c^2=90-4^2-6^2=38< 64$
$\Rightarrow b< 8$
Vậy $4\leq a< 9, 5\leq b< 8, 6\leq c\leq 7$
Suy ra:
$(a-4)(a-9)\leq 0$
$(b-5)(b-8)\leq 0$
$(c-6)(c-7)\leq 0$
$\Rightarrow (a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\leq 0$
$\Rightarrow a^2+b^2+c^2+118\leq 13(a+b+c)$
$\Rightarrow 90+208\leq 13P$
$\Rightarrow P\geq 16$
Vậy $P_{\min}=16$. Giá trị này đạt tại $(a,b,c)=(4,5,7)$
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4})(1+1+1)\geq (\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})^2(1)$
$(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})(1+1+1)\geq (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2(2)$
$(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})(a+b+c)\geq (1+1+1)^2$
$\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}=9$(3)$
Từ $(1); (2); (3)$ suy ra:
$\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}\geq \frac{9^4}{27}=243$
Vậy GTNN của biểu thức là 243 khi $a=b=c=\frac{1}{3}$
Đặt \(P=\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}=\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\left(a+b+c\right)^4\) (do \(a+b+c=1\))
\(P=\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\left(a+b+c\right)^4\ge3\sqrt[3]{\dfrac{1}{a^4.b^4.c^4}}.\left(3\sqrt[3]{abc}\right)^4=3^5=243\)
\(P_{min}=243\) khi \(a=b=c=\dfrac{1}{3}\)