K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2020

Áp dụng Bất đẳng thức AM-GM dạng cộng mẫu thức ta có :

\(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge\frac{\left(a+b+c\right)^2}{a+b^2+b+c^2+c+a^2}\)

\(=\frac{\left(a+b+c\right)^2}{a+a^2+b+b^2+c+c^2}=\frac{3^2}{a^2+b^2+c^2+3}=\frac{9}{a^2+1+b^2+1+c^2+1}\)

Theo đánh giá của AM-GM thì ta có :

 \(a^2+1\ge2\sqrt[2]{a^2}=2a\)

\(b^2+1\ge2\sqrt[2]{b^2}=2b\)

\(c^2+1\ge2\sqrt[2]{c^2}=2c\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(a^2+1+b^2+1+c^2+1\ge2a+2b+2c\)

Khi đó thì \(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge\frac{9}{2a+2b+2c}=\frac{3}{2}\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy bài toán đã được chứng minh hoàn tất 

14 tháng 7 2020

ở mẫu lớn hơn hoặc bằng thì đảo ngược là bé thua hoặc bằng mà bạn ơi

19 tháng 12 2018

Áp dụng BĐT AM-GM: \(1+b^2\ge2b\)

\(\Rightarrow\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng vế với vế 3 BĐT trên ta được:  \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)

Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\) 

Nên \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{\left(a+b+c\right)^2}{6}=3-\frac{9}{6}=\frac{3}{2}\)(đpcm).

Dấu "=" xảy ra <=> a=b=c=1.

28 tháng 12 2016

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự : \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\) ; \(\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)

Cộng theo vế : \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{2}.\frac{\left(a+b+c\right)^2}{3}=\frac{3}{2}\)

\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)

4 tháng 8 2020

Vào thống kê hỏi đáp xem nhé. Bài này chỉ cần biểu diễn dưới dạng tổng bình phương là xong.

4 tháng 8 2020

ta có \(\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}\ge\frac{3}{4}\) (***)

do ab+bc+ca=3 nên

VT (***)=\(\frac{a^3}{b^2+ab+bc+ca}+\frac{b^3}{c^2+ab+bc+ca}+\frac{c^3}{a^2+ab+bc+ca}\)

\(=\frac{a^3}{\left(b+c\right)\left(a+b\right)}+\frac{b^3}{\left(c+a\right)\left(b+c\right)}+\frac{c^3}{\left(a+b\right)\left(c+a\right)}\)

áp dụng bđt AM-GM ta có \(\frac{a^3}{\left(b+c\right)\left(c+a\right)}+\frac{b+c}{8}+\frac{a+b}{8}\ge\frac{3a}{4}\)

\(\Rightarrow\frac{a^3}{\left(b+c\right)\left(c+a\right)}\ge\frac{5a-2b-c}{8}\left(1\right)\)

chứng minh tương tự ta cũng được

\(\hept{\begin{cases}\frac{b^3}{\left(c+a\right)\left(a+b\right)}\ge\frac{5b-2c-a}{8}\left(2\right)\\\frac{c^3}{\left(a+b\right)\left(c+a\right)}\ge\frac{5c-2a-b}{8}\left(3\right)\end{cases}}\)

cộng theo vế với vế của (1),(2) và (3) ta được VT (***) \(\ge\frac{a+b+c}{4}\)

mặt khác ta dễ dàng chứng minh được \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)

đẳng thức xảy ra khi a=b=c=1 (đpcm)

23 tháng 1 2020

\(A=\frac{\frac{1}{2}a^2\left(\sqrt[3]{b}+\sqrt[3]{c}+1\right)\left[\left(\sqrt[3]{b}-\sqrt[3]{c}\right)^2+\left(\sqrt[3]{b}-1\right)^2+\left(\sqrt[3]{c}-1\right)^2\right]}{2\left(a+2\right)\left(a+\sqrt[3]{bc}\right)}\ge0\)

\(\Sigma_{cyc}\frac{a^2}{a+\sqrt[3]{bc}}=\Sigma_{cyc}A+\Sigma_{cyc}\frac{2\left(a-1\right)^2}{3\left(a+2\right)}+\frac{5}{6}\left(a+b+c\right)-1\ge\frac{5}{6}\left(a+b+c\right)-1=\frac{3}{2}\)

23 tháng 1 2020

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

Chứng minh rằng : \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)

\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)

\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)

\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{cases}}\)

\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\left(đpcm\right)\)

Vì \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)

Mà \(\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{3}{2}\left(đpcm\right)\)

Chúc bạn học tốt !!!

22 tháng 5 2017

\(a=b=c=1\)

22 tháng 5 2017

Dấu bằng xảy ra thì ai mà chẳng biết

4 tháng 9 2018

\(\frac{2a^2}{a+b^2}=2a-\frac{2ab^2}{a+b^2}\ge2a-\frac{2ab^2}{2b\sqrt{a}}=2a-b\sqrt{a}\ge2a-\frac{b+ba}{2}\) 

Tương tự rồi cộng từng vế ta có: 

\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge\frac{3}{2}\left(a+b+c\right)-\frac{ab+bc+ca}{2}\) 

Lại có: \(\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)\ge3\left(ab+bc+ca\right)^2\Rightarrow a+b+c\ge ab+bc+ca\) 

\(\Rightarrow VT\ge\frac{3}{2}\left(a+b+c\right)-\frac{a+b+c}{2}\ge a+b+c\) 

Dấu "=' khi a=b=c=1

11 tháng 6 2020

Làm 2 cách nhá 

\(\frac{2a^2}{a+b^2}=\frac{2a^2}{\frac{a^2+1}{2}+b^2}=\frac{4a^2}{a^2+2b^2+1}=\frac{4a^4}{a^4+2a^2b^2+a^2}\)

Tương tự rồi theo Cauchy Schwarz ta có được:

\(LHS\ge\frac{\left(2a^2+2b^2+2c^2\right)^2}{a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2+3}=\frac{36}{\left(a^2+b^2+c^2\right)^2+3}=\frac{36}{12}=3\)

Đẳng thức xảy ra tại a=b=c=1

19 tháng 5 2018

có mún tui giúp ko ;;)

19 tháng 5 2018

Đề sai rồi phải là a^2+b^2+c^2=1