\(\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

bạn đã trúng tà thuật đạo từ con mắt này .Nói cách khác bạn đã trúng ảo thuật ,chỉ có mình và itachi mới giải thuật được cho bạn nha!!undefined

ê bn có bthường k zậy

22 tháng 6 2018

\(a+b+c=2\Rightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{4}{3}\)

\(P=\dfrac{7+2b}{1+a}+\dfrac{7+2c}{1+b}+\dfrac{7+2a}{1+c}\)

\(\ge\dfrac{\left(21+2\left(a+b+c\right)\right)^2}{\left(1+a\right)\left(7+2b\right)+\left(1+b\right)\left(7+2c\right)+\left(1+c\right)\left(7+2a\right)}\)

\(=\dfrac{25^2}{21+9\left(a+b+c\right)+2\left(ab+bc+ca\right)}\ge\dfrac{25^2}{21+9.2+\dfrac{2.4}{3}}=15\)

\("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

26 tháng 3 2017

Câu hỏi của Neet - Toán lớp 9 | Học trực tuyến

9 tháng 7 2017

Ta có:\(\sum\dfrac{a^2+6a+3}{a^2+a}=\sum\left(1+\dfrac{5a+3}{a^2+a}\right)=3+\sum\dfrac{5a+3}{a^2+a}\)

Có BĐT phụ: \(\dfrac{5a+3}{a^2+a}\ge-\dfrac{7}{2}a+\dfrac{15}{2}\)đúng vì nó tương đương \(\left(7a+6\right)\left(a-1\right)^2\ge0\left(true\right)\)

Áp dụng tương tự ta có:

\(VT\ge3-\dfrac{7}{2}\left(a+b+c\right)+\dfrac{15}{2}.3\ge3-\dfrac{21}{2}+\dfrac{45}{2}=15\)

Dấu = xảy ra khi a=b=c=1

làm sao để có BĐT phụ để chứng minh hả bn @@

bài 1: Rút gọn: a) A= \(sin^2x+sin^2x.cot^2x\) b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\) c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\) d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\) e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\) f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\) g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\) bài 2: cho các số dương a,b,c có a+b+c=3....
Đọc tiếp

bài 1: Rút gọn:

a) A= \(sin^2x+sin^2x.cot^2x\)

b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\)

c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\)

d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\)

e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\)

f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\)

g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\)

bài 2: cho các số dương a,b,c có a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức

P= \(\dfrac{a\sqrt{a}}{\sqrt{2c+a+b}}+\dfrac{b\sqrt{b}}{\sqrt{2a+b+c}}+\dfrac{c\sqrt{c}}{\sqrt{2b+c+a}}\)

bài 3: cho a,b,c dương sao cho \(a^2+b^2+c^2=3\). Chứng minh rằng: \(\dfrac{a^3b^3}{c}+\dfrac{a^3c^3}{b}+\dfrac{b^3c^3}{a}\ge3abc\)

bài 4: cho các số thực dương a,b,c thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất cảu biểu thức :

P= \(\dfrac{1}{a}+\dfrac{1}{b}-c\)

bài 5: Cho a,b>0, \(3b+b\le1.\) Tìm giá trị nhỏ nhất của P= \(\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)

5
AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Bài 1:

a)

\(\sin ^2x+\sin ^2x\cot^2x=\sin ^2x(1+\cot^2x)=\sin ^2x(1+\frac{\cos ^2x}{\sin ^2x})\)

\(=\sin ^2x.\frac{\sin ^2x+\cos^2x}{\sin ^2x}=\sin ^2x+\cos^2x=1\)

b)

\((1-\tan ^2x)\cot^2x+1-\cot^2x\)

\(=\cot^2x(1-\tan^2x-1)+1=\cot^2x(-\tan ^2x)+1=-(\tan x\cot x)^2+1\)

\(=-1^2+1=0\)

c)

\(\sin ^2x\tan x+\cos^2x\cot x+2\sin x\cos x=\sin ^2x.\frac{\sin x}{\cos x}+\cos ^2x.\frac{\cos x}{\sin x}+2\sin x\cos x\)

\(=\frac{\sin ^3x}{\cos x}+\frac{\cos ^3x}{\sin x}+2\sin x\cos x=\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin x\cos x}=\frac{(\sin ^2x+\cos ^2x)^2}{\sin x\cos x}=\frac{1}{\sin x\cos x}\)

\(=\frac{1}{\frac{\sin 2x}{2}}=\frac{2}{\sin 2x}\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Bài 2:

Áp dụng BĐT Cauchy Schwarz ta có:

\(P=\frac{a^2}{\sqrt{a(2c+a+b)}}+\frac{b^2}{\sqrt{b(2a+b+c)}}+\frac{c^2}{\sqrt{c(2b+c+a)}}\)

\(\geq \frac{(a+b+c)^2}{\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}}(*)\)

Tiếp tục áp dụng BĐT Cauchy-Schwarz:

\((\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq (a+b+c)(2c+a+b+2a+b+c+2b+c+a)\)

\(\Leftrightarrow (\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq 4(a+b+c)^2\)

\(\Rightarrow \sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}\leq 2(a+b+c)(**)\)

Từ \((*); (**)\Rightarrow P\geq \frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\)

Dấu "=" xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
2 tháng 5 2018

Lời giải:

Ta có:

\(P=\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}=\frac{(ab)^2+(bc)^2+(ca)^2}{abc}\)

Xét tử số:

\(\text{TS}=(ab)^2+(bc)^2+(ca)^2\)

\(\Rightarrow \text{TS}^2=a^4b^4+b^4c^4+c^4a^4+2(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2)\)

Áp dụng BĐT AM-GM ta có:

\(\left\{\begin{matrix} a^4b^4+b^4c^4\geq 2a^2b^4c^2\\ b^4c^4+c^4a^4\geq 2a^2b^2c^4\\ c^4a^4+a^4b^4\geq 2a^4b^2c^2\end{matrix}\right.\)

Cộng theo vế và rút gọn:

\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)

Do đó:

\(\text{TS}^2\geq 3(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2)=3a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)

\(\Rightarrow \text{TS}\geq \sqrt{3}abc\)

\(\Rightarrow P\geq \sqrt{3}\)

Vậy \(P_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

6 tháng 5 2018

Cách khác:

\(P^2=\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}+\dfrac{c^2a^2}{b^2}+2\left(a^2+b^2+c^2\right)\)

Áp dụng BĐT Cauchy:

\(\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}\ge2b^2\)

CMTT\(\Rightarrow\)\(\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}+\dfrac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)

\(\Rightarrow P^2\ge3\Rightarrow P\ge\sqrt{3}\)

Dấu"=" xảy ra\(\Leftrightarrow\)a=b=c=\(\dfrac{1}{\sqrt{3}}\)

23 tháng 7 2017

\(\left(x^2+\dfrac{8}{27x}+\dfrac{8}{27x}\right)+\left(y^2+\dfrac{8}{27y}+\dfrac{8}{27y}\right)+\dfrac{11}{27}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\ge3\sqrt[3]{\dfrac{8^2}{27^2}}+3\sqrt[3]{\dfrac{8^2}{27^2}}+\dfrac{11}{27}.\dfrac{4}{x+y}\)

\(\ge\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{11}{9}=\dfrac{35}{9}\)