K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2016

bài này cô si đc ko nhỉ

7 tháng 6 2016

Đặt \(A=\left(1+\frac{1}{a^3}\right)\left(1+\frac{1}{b^3}\right)\left(1+\frac{1}{c^3}\right)\)

Ta có:

\(A=1+\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)+\left(\frac{1}{a^3b^3}+\frac{1}{b^3c^3}+\frac{1}{c^3a^3}\right)+\frac{1}{a^3b^3c^3}\)

Áp dụng BĐT Côsi, ta có:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{abc}\)

\(\frac{1}{a^3b^3}+\frac{1}{b^3c^3}+\frac{1}{c^3a^3}\ge\frac{3}{a^2b^2c^2}\)

Thay vào A, ta được \(A\ge1+\frac{3}{abc}+\frac{3}{a^2b^2c^2}+\frac{1}{a^3b^3c^3}=\left(1+\frac{1}{abc}\right)^3\)

Lại áp dụng BĐT Côsi ta có:

\(abc\le\left(\frac{a+b+c}{3}\right)^3=\left(\frac{6}{3}\right)^3=8\)hay\(\frac{1}{abc}\ge\frac{1}{8}\)

Suy ra:\(A\ge\left(1+\frac{1}{8}\right)^3=\frac{729}{512}\)

Đẳng thức xảy ra khi và chỉ khi:\(\hept{\begin{cases}a+b+c=6\\a=b=c\end{cases}\Leftrightarrow}a=b=c=2\)

NV
31 tháng 8 2021

Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai

1 tháng 9 2021

là c\(^4\) ạ

 

21 tháng 8 2021

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

21 tháng 8 2021

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

NV
19 tháng 4 2022

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

19 tháng 4 2022

à mình quên < hặc =1/2

8 tháng 1 2022

Từ a+b+c=0 => b+c=-a 

Theo đề ra ta có a+ b3 + c= 0 

=> a3 + (b+c)(b2 - bc + c2 )=0 

<=> a3- a[(b + c )2 -3bc]= 0 

<=> a3- [( -a )2 - 3bc] = 0 

<=> a3 -  a3 +3bc = 0 

<=> 3bc= 0 

<=> a =0 hoặc b=0 hoặc c=0 ( đpcm) 

cho mik điểm nha bạn ơiii

 

14 tháng 5 2018

cm cái gì?

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}$

Áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}\geq \frac{(a+b+c).3^5}{27}=9(a+b+c)$
Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$