Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Hình như đề sai , giả sử a = b = c = 0
=> vế trái bằng 0 , vé phải bằng 24
\(\left(3a+b-c\right)^3+\left(3b+c-a\right)^3+\left(3c+a-b\right)^3+24\)
\(=24+27a^3+27b^3+27c^3+3\left(\left(3a+b\right)\left(3a-c\right)\left(b-c\right)+\left(3b+c\right)\left(3b-a\right)\left(c-a\right)+\left(3c+a\right)\left(3c-b\right)\left(a-b\right)\right)\)\(\left(3a+3b+3c\right)^3=27a^3+27b^3+27c^3+81\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow8+A=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)
Khi đó điều kiện đb tương ứng
\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)
\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)
\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)
\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)
Do đó ta có đpcm
Chúc bạn học tốt!
Sai đề! Sửa: that 2c+b-a=2c+a-b
Đặt 2a+b-c=x, 2b+c-a=y, 2c+a-b=z
\(\Rightarrow8\left(a+b+c\right)^3=\left(x+y+z\right)^3=x^3+y^3+z^3\)và \(P=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có: \(\left(x+y+z\right)^3-x^3-y^3-z^3=0\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)z\left(x+y+z\right)-x^3-y^3=0\)
\(\Leftrightarrow3xy\left(x+y\right)+3\left(x+y\right)z\left(x+y+z\right)=0\Leftrightarrow3\left(x+y\right)\left(xy+xz+yz+z^2\right)=0\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\Leftrightarrow3P=0\Leftrightarrow P=0\)
Đặt \(\left\{{}\begin{matrix}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{matrix}\right.\)
Khi đó điều kiện đb tương ứng
\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)
\(\Leftrightarrow3\left(x+y\right)\left(x+z\right)\left(x+z\right)=24\)
\(\Rightarrow3\left(2a+4b\right)\left(2b+4c\right)\left(2c+4a\right)=24\)
\(\Rightarrow\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)=1\)
Do đó ta có \(đpcm\)
Chúc bạn học tốt!
nhìn cách làm là biết của web khác.You ko nên zô phần câu hỏi tương tự,qua web khác đọc rồi lại viết ngay về web mk.Có lòng thì cho người ta cái link.Vì GP mà ko bik phân biệt nx r........
Lời giải:
Đặt \((3a+b-c,3b+c-a,3c+a-b)=(x,y,z)\)
\(\Rightarrow \left\{\begin{matrix} 3a+3b+3c=x+y+z\\ a+2b=\frac{x+y}{2}\\ b+2c=\frac{y+z}{2}\\ c+2a=\frac{x+z}{2}\end{matrix}\right.\)
Bài toán trở thành:
Với các số thực $x,y,z$ thỏa mãn \((x+y+z)^3=24+x^3+y^3+z^3\)
CMR: \((x+y)(y+z)(x+z)=8\)
------------------------------------------------
Áp dụng HĐT \(m^3+n^3=(m+n)^3-3mn(m+n)\) ta có:
\((x+y+z)^3=24+x^3+y^3+z^3\)
\(\Leftrightarrow (x+y+z)^3=24+(x+y)^3-3xy(x+y)+z^3\)
\(\Leftrightarrow (x+y+z)^3=24+(x+y+z)^3-3xy(x+y)-3z(x+y)(x+y+z)\)
\(\Leftrightarrow 3(x+y)[z(x+y+z)+xy]=24\)
\(\Leftrightarrow (x+y)[z(y+z)+x(z+y)]=8\)
\(\Leftrightarrow (x+y)(z+x)(z+y)=8\) (đpcm)
Lời giải:
Đặt \(\left\{\begin{matrix} 3a+b-c=x\\ 3b+c-a=y\\ 3c+a-b=z\end{matrix}\right.\)
Khi đó, điều kiện đb tương đương với:
\((x+y+z)^3=24+x^3+y^3+z^3\Leftrightarrow 3(x+y)(y+z)(x+z)=24\)
\(\Leftrightarrow 3(2a+4b)(2b+4c)(2c+4a)=24\)
\(\Leftrightarrow (a+2b)(b+2c)(c+2a)=1\)
Do đó ta có đpcm.
Đặt \(3a+b-c=x;3b+c-a=y;3c+a-b=z\)
\(\Rightarrow27\left(a+b+c\right)^3=\left[3\left(a+b+c\right)\right]^3=\left(x+y+z\right)^3\)
Biểu thức đã cho trở thành:
\(\left(x+y+z\right)^3=x^3+y^3+z^3+24\)
\(\Leftrightarrow\left(x+y+z\right)^3-x^3-y^3-z^3=24\)
\(\Leftrightarrow\left(x+y+z\right)^3-\left(x+y\right)^3+3xy\left(x+y\right)-z^3=24\)
\(\Leftrightarrow\left(x+y+z\right)^3-\left(x+y+z\right)^3+3xy\left(x+y\right)+3\left(x+y\right)z\left(x+y+z\right)=24\)
\(\Leftrightarrow3\left(x+y\right)\left(z^2+xy+yz+zx\right)=24\)
\(\Leftrightarrow3\left(x+y\right)\left[z\left(y+z\right)+x\left(y+z\right)\right]=24\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=24\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=8\)
\(\Leftrightarrow\left(3a+b-c+3b+c-a\right)\left(3b+c-a+3c+a-b\right)\left(3a+b-c+3c+a-b\right)=8\)
\(\Leftrightarrow\left(2a+4b\right)\left(2b+4c\right)\left(2c+4a\right)=8\)
\(\Leftrightarrow2\left(a+2b\right).2\left(b+2c\right).2\left(c+2a\right)=8\)
\(\Leftrightarrow8\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)=8\)
\(\Leftrightarrow\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)=1\)