Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn cái đề đã thấy người ra đề vui tính. \(a+b+c=2009\)
1 trong a;b;c là 2009 nghĩa là 2 số bằng 0
\(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\) hoán vị của \(\dfrac{1}{0};\dfrac{1}{0};\dfrac{1}{2009}\)
và \(\dfrac{1}{0}=?\)
Bạn bị nhầm rồi. Chẳng hạn:
1+(-1)+2009=2009
\(\dfrac{1}{1}+\dfrac{1}{-1}+\dfrac{1}{2009}=\dfrac{1}{2009}\)
Trong ba điều kiện cho trên thì ta có 1 số 1 còn 2 số kia =0 từ đó khẳng định a^2009+b^2009+c^2009=1
Mình cần chứng minh ra nó gồm 1 số =1 và 2 số =0 mà bạn =)))))))
Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)
ta có:\(A=\dfrac{1}{a^2+b^2+c^2}+\dfrac{2009}{ab+bc+ca}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}+\dfrac{2007}{ab+bc+ca}\)
Áp dụng BĐT cauchy-schwarz:
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}\ge\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}\ge\dfrac{9}{9}=1\)
mà \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca\le3\)
do đó \(A\ge1+\dfrac{2007}{3}=670\)
dấu = xảy ra khi và chỉ khi a=b=c=1(làm tắt)
\(\dfrac{1}{a^2+a+1}\ge\dfrac{1}{a^2+\dfrac{a^2+1}{2}+1}=\dfrac{2}{3}.\dfrac{1}{a^2+1}=\dfrac{2}{3}\left(1-\dfrac{a^2}{a^2+1}\right)\ge\dfrac{2}{3}\left(1-\dfrac{a}{2}\right)\)
Tương tự và cộng lại: \(VT\ge\dfrac{2}{3}\left(3-\dfrac{a+b+c}{2}\right)=\dfrac{2}{3}.\dfrac{3}{2}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{1}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{ac+bc+c^2}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b;c=1\\b=-c;a=1\\c=-a;b=1\end{matrix}\right.\)
Thay trường hợp nào vào ta cũng được kết quả như bài toán
thanks