K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Từ \(0\le a\le b\le c\le1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)

Và \(ab+1\ge c\)

Do vậy \(2\left(ab+1\right)\ge a+b+c\Leftrightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

Cm tương tự ta có : \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ca+1}\le\frac{2b}{a+b+c}\end{cases}}\)

Cộng vế với vế của 3 bđt trên :

\(\frac{a}{bc+1}+\frac{b}{ca+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị

16 tháng 4 2015

A=I 2x+2 I + I 2x-2013I =I2x+2I +I2013- 2 xI >= I2x+2+2013- 2x I=2015

Vậy min A=2015

Phần còn lại bạn tự làm 

Chúc bạn học tốt

6 tháng 4 2017

Giải:

Từ giả thiết ta có:

\(\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-\left(b+c\right)+bc\ge0\)

\(\Leftrightarrow bc+1\ge b+c\)

\(\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)

Tương tự ta có:

\(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\)

\(\frac{c}{ab+1}\le c\le1\left(3\right)\)

Cộng theo vế \(\left(1\right);\left(2\right);\left(3\right)\) ta được:

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)

Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\) (Đpcm)

5 tháng 4 2017

Ta có : \(0\le a\le b\le1\Rightarrow\hept{\begin{cases}a-1\le0\\b-1\le0\end{cases}}\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\)

\(\Rightarrow ab+1\ge a+b\Rightarrow\frac{1}{ab+1}\le\frac{1}{a+b}\)

\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(c\ge0\right)\)

Mà \(\frac{c}{a+b}\le\frac{2c}{a+b+c}\left(c\ge0\right)\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

CM tương tự ta cũng có : \(\hept{\begin{cases}\frac{b}{ac+1}\le\frac{2b}{a+b+c}\\\frac{a}{bc+1}\le\frac{2a}{a+b+c}\end{cases}}\)

Cộng vế với vế ta được :

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (ĐPCM)

Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

Cho abc là số dương thỏa mãn 0<a<b<c<1

Chứng minh rằng \(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<2

Từ giả thiết ta có:

(1-b) (1-c)>0 và 1 -(b+c)+bc>0 và bc+1>b+c và \(\frac{a}{bc+1}\)<\(\frac{a}{b+c}\)<\(\frac{a}{a+b}\)(1)

Tương tự ta cũng có :\(\frac{b}{ac+1}\)<\(\frac{b}{a+c}\)<\(\frac{b}{a+b}\)(2);\(\frac{c}{ab+1}\)<c<1(3)

Cộng (1),(2),(3) theo vế ta được :\(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<\(\frac{a+b}{a+b}\)+1=2

Vậy \(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<2