K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

a) Gọi a+4b là c, 10a+b là d.Ta có:

a+4b= c

10a+b = d

=> 3a+ 12b =3c

10a + b = d

=> 3c+d = 10a+3a+12b+b = 13a + 13b =13(a+b) => 3c + d chia hết cho 13

Mà:  3c+d chia hết cho 13

        3c chia hết cho 13

=> d chia hết cho 13 hay 10a+ b chia hết cho 13

28 tháng 3 2020

2) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=2^n.3^2-2^n.2^2+3^n-2^n\)

\(=2^n.9+2^n.4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\left(đpcm\right)\)

28 tháng 3 2020

1) \(x+2y=3xy+3\)

\(\Rightarrow3xy+3-x-2y=0\)

\(\Rightarrow3xy-x+3-2y=0\)

\(\Rightarrow18xy-6x+18-12y=0\)

\(\Rightarrow6x\left(3y-1\right)+4-12y=-14\)

\(\Rightarrow6x\left(3y-1\right)-4\left(3y-1\right)=-14\)

\(\Rightarrow\left(6x-4\right)\left(3x-1\right)=-14\)

Bạn tự phân tích ra rồi tìm x, y nhé!

5 tháng 3 2020

Xét:\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)\left(d^2+d\right)\)

\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)

Ta có: \(a.\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho 2

\( \implies\)\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho 2

Mà \(a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) chia hết cho 2

\( \implies\) \(a+b+c+d\) chia hết cho 2

Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số (đpcm)

11 tháng 4 2018

a, Ta có: 3xy - 5 = x2 + 2y

=> 3xy - x2 - 2y = 5

=> y.( 3x - 2 ) = 5 + x.x

=> y = \(\frac{5+x^2}{3x-2}\)

=> \(x^2+5⋮3x-2\)( vì y là số nguyên )

=> \(3x^2+15⋮3x-2\)

\(\Rightarrow x\left(3x-2\right)+15+2x⋮3x-2\)

\(\Rightarrow2x+15⋮3x+2\)

\(\Rightarrow6x+45⋮3x+2\)

\(\Rightarrow2.\left(3x+2\right)+41⋮3x+2\)

\(\Rightarrow41⋮3x+2\)

\(\Rightarrow3x+2\in\left\{-41;-1;1;41\right\}\)

\(\Rightarrow3x\in\left\{-43;-3;-1;39\right\}\)

VÌ 3x chia hết cho 3

\(\Rightarrow3x\in\left\{-3;39\right\}\)

\(\Rightarrow x\in\left\{-1;13\right\}\)

+) với x = -1 => y = -6/5 ( loại )

+) với x = 13 => y = 174/37 ( loại )

Vậy không tìm được ( x ; y ) thỏa mãn bài

b,

Xét \(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)⋮10\)

\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

Vậy: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

AH
Akai Haruma
Giáo viên
13 tháng 11 2021

Lời giải:

Từ \(a^2+b^2=c^2\Rightarrow (a+b)^2-c^2=2ab\)

\(\Rightarrow (a+b-c)(a+b+c)=2ab\) \((1)\)

TH1: Nếu \(a+b+c\) lẻ:

Từ \((1)\)\(2ab\) chia hết cho $a+b+c$ . Mà \((2,a+b+c)=1\Rightarrow\) $ab$ chia hết cho $a+b+c$

TH2: \(a+b+c \) chẵn. Vì \(a+b+c,a+b-c\) cùng tính chẵn lẻ nên \(a+b-c\) chẵn. Đặt \(a+b-c=2k\Rightarrow ab=k(a+b+c)\)

\(\Rightarrow ab\) chia hết cho $a+b+c$

Từ 2 TH trên, suy ra \(ab\) chia hết cho \(a+b+c\)

12 tháng 11 2021

Em tưởng a+b+c lẻ là vô lí ạ?
Vì nếu a+b+c lẻ thì a+b+c-2c = a+b-c cũng lẻ
=> 2ab lẻ (vô lí)