Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây:
Câu hỏi của trieu dang - Toán lớp 8 - Học toán với OnlineMath
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{\left(yz+xz+xy\right)}{xyz}=0\)
\(\Rightarrow yz+zx+xy=0\)
Ta có : \(x^2+2yz=x^2+yz+yz\)
\(=x^2+yz-zx-xy\)
\(=x\left(x-z\right)-y\left(x-z\right)\)
\(=\left(x-y\right)\left(x-z\right)\)
Tương tự : \(y^2+2xz=y^2+xz+xz\)
\(=y^2+xz-xy-yz\)
\(=y\left(y-x\right)+z\left(x-y\right)\)
\(=\left(x-y\right)\left(z-y\right)\)
\(z^2+2xy=\left(x-z\right)\left(y-z\right)\)
\(\Rightarrow M=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(x-y\right)\left(z-y\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\) \(M=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)
\(M=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{yz\left(y-z\right)-xz\left(x-y+y-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(A=\frac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)
\(\Leftrightarrow xy=-yz-zx;yz=-xy-zx;zx=-xy-yz\)
Ta có: x2+2yz=x2+yz+yz=x2+yz-xy-zx=x(x-y)-z(x-y)=(x-y)(x-z)
Tương tự: \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2+2xy=\left(z-x\right)\left(z-y\right)\)
A= \(\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)=\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)
\(=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)
\(=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{xy\left(x-y\right)-xz\left(x-y+y-z\right)+yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\frac{xy\left(x-y\right)-xz\left(x-y\right)-xz\left(y-z\right)+yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)\(=\frac{\left(xy-xz\right)\left(x-y\right)-\left(xz-yz\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\frac{x\left(y-z\right)\left(x-y\right)-z\left(x-y\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=1\)
Ta có 1/x+1/y+1/z=0
=>1/x+1/y=-1/z
=>(1/x+1/y)^3= (-1/z)^3
=>1/x^3+1/y^3+3.1/x.1/y.(1/x+1/y) =-1/z^3
=>1/x^3+1/y^3+1/z^3= -3.1/x.1/y.(1/x+1/y) =3/(xyz) (vì 1/x+1/y=-1/z)
Mặt khác: 1/x+1/y+1/z=0
=>(xy+yz+zx)/(xyz)=0
=>xy+yz+zx=0
A=yz/x^2 +2yz + xz/y^2+ 2xz + xy/z^2+ 2 xy
=xyz/x^3+xyz/y^3+xyz/z^3 +2(xy+yz+zx) (vì x,y,z khác 0)
=xyz(1/x^3+1/y^3+1/z^3) (vì xy+yz+zx=0)
=xyz.3/(xyz) (vì 1/x^3+1/y^3+1/z^3=3/(xyz) )
=3
Vậy A=3.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\) (nhân 2 vế với\(xyz\ne0\))
=> x2 + 2yz = x2 + 2yz - xy - yz - xz = x2 - xz - xy + yz = x(x - z) - y(x - z) = (x - y)(x - z).
Tương tự,y2 + 2xz = (y - x)(y - z) ; z2 + 2xy = (z - x)(z - y)
\(\Rightarrow\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)
Ta có: \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2=z^2\)
\(\Leftrightarrow x^2+y^2-z^2=-2xy\)
Chứng minh tương tự ta có:
\(x^2+z^2-y^2=-2xz\)
\(y^2+z^2-x^2=-2yz\)
\(\frac{xy}{x^2+y^2-z^2}+\frac{xz}{x^2+z^2-y^2}+\frac{yz}{y^2+z^2-x^2}\)
\(=\frac{xy}{-2xy}+\frac{xz}{-2xz}+\frac{yz}{-2yz}\)
\(=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\)
\(=-\frac{3}{2}\)
Vậy giá trị biểu thức là \(-\frac{3}{2}\)