Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: xy+x+y = 3
=> xy +x +y +1 =4
=> (x+1).(y+1) = 4 (1)
tương tự, ta có: (y+1).(z+1)= 9 (2)
(x+1).(z+1) = 16 (3)
Nhân (1);(2);(3) lại vs nhau
được: \([\left(x+1\right).\left(y+1\right).\left(z+1\right)]^2=576=24^2=\left(-24\right)^2.\)
TH1: (x+1).(y+1).(z+1) = 24
=> 4.(z+1)=24
=> z+1 = 6 => z = 5
mà yz +y +z = 8
=> 6y + 5 = 8 => y = 1/2
mà xz+z+x = 15
=> 6x + 5 = 15 => x = 5/3
=> P = 5/3 +1/2 + 5 = 43/6
TH2: (x+1).(y+1).(z+1) = -24
...
bn cũng lm tương tự như TH1 nha!
Áp dụng BĐT Cauchy Schwarz ta có:
\(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+xz\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\left|xy+yz+xz\right|\ge xy+yz+xz\left(1\right)\)
Mặt khác:
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+xz\right)\)
Kết hợp với \(\left(1\right)\Rightarrow9-2\left(xy+yz+xz\right)\ge xy+yz+xz\)
\(\Leftrightarrow3\left(xy+yz+xz\right)\le9\Leftrightarrow xy+yz+xz\le3\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\\x+y+z=3\end{cases}}\Leftrightarrow x=y=z=1\)
Vậy \(Max\) biểu thức là \(3\Leftrightarrow x=y=z=1\)
Với \(x,y,z\)ta có :
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2>=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge=0\)
\(x^2+y^2+z^2-xy-yz-zx\ge=0\)
\(\left(y+x+z\right)^2\ge=3\left(x+y+z\right)\)
\(\frac{\left[\left(x+y+z\right)^2\right]}{3}\ge=xy+zx+yz\)
\(\Rightarrow xy+yz+zx\le=3\)
Dấu \(=\)xảy ra khi \(x=y=z=1\)
\(\text{Σ}\frac{x^2}{\sqrt[3]{x^3+8}}=\text{Σ}\frac{x^2}{\sqrt[3]{\left(x+2\right)\left(x^2-2x+4\right)}}\ge\text{Σ}\frac{x^2}{\frac{x+2+x^2-2x+4}{2}}=\text{2}\left(Σ\frac{x^2}{x^2-x+6}\right)\)
Áp dụng BDT Cauchy-Schwarz:
\(VT\ge2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-x-y-z+18}\)
Áp dụng BDT: \(9=3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2\Rightarrow x+y+z\ge3\)
\(\Rightarrow VT\ge2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-3+18}=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+15}=2\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+xz\right)}\)
\(\ge2\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)^2}=1\)
Dấu = xảy ra khi x=y=z=1
\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
=>đpcm
2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1
= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1
= xz/1+xz+z + 1/z+1+xz + z/xz+z+1
= xz+1+x/1+xz+x = 1 (đpcm)
Tham khảo: