\(x^2+y^2+z^2< 2\)
Chứng minh \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

nhầm mk giải lại

vì x;y;z là 3 số dương \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{9}{x+y+z}\)(bđt cauchy schwarz dạng engel) 

dấu = xảy ra khi x=y=z=2

mà x+y+z<=6\(\Rightarrow\frac{9}{x+y+z}>=\frac{9}{6}=\frac{3}{2}\)\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}.=\frac{3}{2}\)

5 tháng 5 2018

vì x;y;z là 3 số dương \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\)(bđt caucht schwarz dạng engel)

dấu = xảy ra khi \(x=y=z=\frac{6}{3}=2\)

vậy \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{3}{2}\)

11 tháng 8 2016

Từ giả thiết \(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Khi đó \(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)

Tương tự cho 2 cái còn lại ta có: \(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)

\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)

Suy ra \(VT=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) 

Đpcm

 

11 tháng 8 2016

Trần Việt Linh vào giúp bạn này đi

14 tháng 5 2017

Ta có   \(VT=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\)

Lại có   \(x^2\left(1-x^2\right)^2=\frac{2x^2\left(1-x^2\right)\left(1-x^2\right)}{2}\le\frac{\left(2x^2+1-x^2+1-x^2\right)^3}{54}=\frac{4}{27}\)

\(\Leftrightarrow\)   \(x\left(1-x^2\right)\le\frac{2}{3\sqrt{3}}\)   \(\Leftrightarrow\)   \(\frac{1}{x\left(1-x^2\right)}\ge\frac{3\sqrt{3}}{2}\)   \(\Leftrightarrow\)   \(\frac{x}{\left(1-x^2\right)}\ge\frac{3\sqrt{3}}{2}x^2\)  (1)

Tương tự cho    \(\frac{y}{\left(1-y^2\right)}\ge\frac{3\sqrt{3}}{2}y^2\)  (2)  và    \(\frac{z}{\left(1-z^2\right)}\ge\frac{3\sqrt{3}}{2}z^2\)   (3)

Cộng vế theo vế ta được   \(VT=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)

Đẳng thức xảy ra khi và chỉ khi  \(x=y=z=\frac{\sqrt{3}}{3}\)

13 tháng 5 2017

đọc là muốn sỉu rùi! Con học lớp 7 ko hỉu j hết......

27 tháng 1 2018

Áp dụng BĐ Svac-xơ, ta có 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(ĐPCM\right)\)

^_^

NV
17 tháng 6 2020

\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)

\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)

\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)

Dấu "=" xảy ra khi \(x=y=z=1\)

16 tháng 6 2020

Áp dụng BĐT Côsi dưới dạng engel, ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9

Dấu "=" xảy ra ⇔ x = y = z