\(\frac{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2019

\(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2}.\sqrt{1-x^2}}\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}=2x^3\)

Tương tự

\(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3;\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)

Cộng vế theo vế

\(VT\ge2\left(x^3+y^3+z^3\right)=2\)

18 tháng 2 2020

Ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=2019\)

\(\Rightarrow\frac{x+y+z}{xyz}=2019\)

\(\Rightarrow x+y+z=2019xyz\)

\(\Rightarrow2019x^2=\frac{x^2+xy+xz}{yz}\)

\(\Rightarrow2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)

\(=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)

\(\Rightarrow\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\)\(\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)(cô -si)

\(\Rightarrow\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le\frac{x^2+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}\)\(=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự ta có: \(\frac{y^2+1+\sqrt{2019y^2+1}}{y}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)

và \(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Cộng từng vế của các bđt trên, ta được:

\(\text{Σ}_{cyc}\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Chứng minh được: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{2019.3\left(xy+yz+zx\right)}{2019xyz}\)

\(\le\frac{2019\left(x+y+z\right)^2}{x+y+z}=2019\left(x+y+z\right)\)

\(\Rightarrow VT\le2020\left(x+y+z\right)=2020.2019xyz\)

Vậy \(\text{Σ}_{cyc}\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le2019.2020xyz\left(đpcm\right)\)

21 tháng 3 2020

Theo bài ra ta có:

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{z}{xyz}+\frac{x}{xyz}+\frac{y}{xyz}=\frac{x+y+z}{xyz}=2019\)

\(\Rightarrow x+y+z=2019xyz\) 

\(\Rightarrow2019x^2=\frac{x^2+xy+xz}{yz}\)

\(\Rightarrow2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)

\(\Rightarrow\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)(Theo BĐT Cosi)

\(\Rightarrow\frac{x^2+1+\sqrt{2019^2+1}}{x}\le\frac{x+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự:

\(\frac{y^2+1+\sqrt{2019y^2+1}}{y}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\Rightarrow VT\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Chứng minh được: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{2019\cdot3\left(xy+yz+zx\right)}{2019xyz}\le\frac{2019\left(x+y+z\right)^2}{x+y+z}\)\(=2019\left(x+y+z\right)\)
 

\(\Rightarrow VT\le2020\left(x+y+z\right)=2020\cdot2019xyz=VP\)

=> ĐPCM

13 tháng 8 2016

Ta có x√(1-y2)<= (x+ 1 - y2)/2

y√(1-z2)<=  (y+1 - z2)/2

z√(1- x2)<= (z+ 1 - x2)/2

=>x√(1-y2) +y√(1-z2)z+√(1- x2)<=3/2

Đấu đẳng thức xảy ra khi: x2 = 1 - y2

y= 1-z2

z = 1- x2

Cộng vế theo vế ta được điều phải chứng minh

13 tháng 8 2016

Thanks nhiều

25 tháng 2 2020

\(1=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{z}\right)+\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{y}\right)\)

\(\ge\sqrt{\frac{x}{y}.\frac{y}{z}}+\sqrt{\frac{y}{z}.\frac{z}{x}}+\sqrt{\frac{z}{x}.\frac{x}{y}}=VP\) (rút gọn lại thôi:v)

9 tháng 4 2021

ĐỊT MẸ

13 tháng 3 2021

Theo giả thiết xy + yz + zx = 1 nên ta có: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}=\frac{1}{xy+yz+zx+x^2}+\frac{1}{xy+yz+zx+y^2}+\frac{1}{xy+yz+zx+z^2}=\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+x\right)\left(y+z\right)}+\frac{1}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Theo bất đẳng thức Cauchy-Schwarz: \(\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^2\le\left(x+y+z\right)\left(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\right)=\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(\Rightarrow\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\le\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)Ta cần chứng minh: \(\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)

hay \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3}{2}\)

Bất đẳng thức cuối đúng theo AM - GM do: \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+z}.\frac{y}{x+y}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\le\frac{\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\left(\frac{y}{y+z}+\frac{y}{x+y}\right)+\left(\frac{z}{z+x}+\frac{z}{z+y}\right)}{2}=\frac{3}{2}\)Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)