3/ab+bc+ca + 2/a^2+b^2+c^2 > 14

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Sai đề rồi

10 tháng 8 2017

ko sai nhé

Áp dụng BĐT Cauchy-Schwarz dạng ENgel ta có:

\(VT=\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}\)

\(=\frac{\sqrt{6}^2}{2\left(ab+bc+ca\right)}+\frac{\sqrt{2}^2}{a^2+b^2+c^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(=\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(a+b+c\right)^2}\approx15>14\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Lời giải:

Đặt:


\(A=\frac{3}{ab+bc+ac}+\frac{2}{a^2+b^2+c^2}=\frac{3}{ab+bc+ac}+\frac{2}{(a+b+c)^2-2(ab+bc+ac)}=\frac{3}{ab+bc+ac}+\frac{2}{1-2(ab+bc+ac)}\)

Đặt \(ab+bc+ac=t\Rightarrow A=\frac{3}{t}+\frac{2}{1-2t}\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\(1=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow t=ab+bc+ac\leq \frac{1}{3}\)

Xét:

\(A-14=\frac{3}{t}+\frac{2}{1-2t}=\frac{3}{t}-9+\frac{2}{1-2t}-5\)

\(=\frac{3-9t}{t}+\frac{10t-3}{1-2t}>\frac{3-9t}{t}+\frac{9t-3}{1-2t}=3(1-3t)(\frac{1}{t}-\frac{1}{1-2t})=\frac{3(1-3t)^2}{t(1-2t)}>0\) với mọi \(t>0; t\leq \frac{1}{3}\)

Do đó: \(A>14\) (đpcm).

22 tháng 11 2017

1) Áp dụng BĐT Cauchy-Schwarz, ta có:

\(VT=\dfrac{9}{3\left(ab+bc+ca\right)}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{16}{\left(a+b+c\right)^2+ab+bc+ca}=\dfrac{16}{1+ab+bc+ca}\ge\dfrac{16}{1+\dfrac{\left(a+b+c\right)^2}{3}}=\dfrac{16}{1+\dfrac{1}{3}}=12\)

Lưu ý: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Đẳng thức xảy ra khi a=b=c=1/3

23 tháng 11 2017

Post lại :v

1) Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\dfrac{1}{ab+bc+ca}+\dfrac{4}{2\left(ab+bc+ca\right)}+\dfrac{1}{a^2+b^2+c^2}\)

\(VT\ge\dfrac{3}{\left(a+b+c\right)^2}+\dfrac{\left(2+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(VT\ge3+\dfrac{9}{\left(a+b+c\right)^2}=3+9=12\)(đpcm)

Đảng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

2) Áp dụng BĐT Cauchy-Schwarz, ta có:

\(VT=\dfrac{\dfrac{2}{3}}{ab}+\dfrac{\dfrac{1}{3}}{ab}+\dfrac{3}{a^2+b^2+ab}\)

\(VT\ge\dfrac{\dfrac{2}{3}}{\dfrac{\left(a+b\right)^2}{4}}+\dfrac{\left(\dfrac{1}{\sqrt{3}}+\sqrt{3}\right)^2}{a^2+b^2+ab+ab}\)

\(VT\ge\dfrac{\dfrac{2}{3}}{\dfrac{1}{4}}+\dfrac{\dfrac{16}{3}}{\left(a+b\right)^2}=\dfrac{8}{3}+\dfrac{16}{3}=\dfrac{24}{3}=8\)(đpcm)

Đẳng thức xảy ra khi \(a=b=\dfrac{1}{2}\)

12 tháng 4 2018

\(Từ GT, ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge6\) Áp dụng bđt AM - GM, ta lại có: \(\frac{1}{a^2}+1\ge\frac{2}{a};\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\) \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\) Cộng theo vế ta có:  \(3\left(\text{∑}\frac{1}{a^2}\right)+3\ge2\left(\text{∑}\frac{1}{a}+\text{∑}\frac{1}{ab}\right)\Leftrightarrow\text{∑}\frac{1} {a^2}\ge3\left(đ\text{pcm}\right)\) \(\text{Dau }"="\Leftrightarrow a=b=c=1\)

11 tháng 4 2018

Từ GT, ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge6\)

Áp dụng bđt AM - GM, ta lại có:

\(\frac{1}{a^2}+1\ge\frac{2}{a};\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\)

Cộng theo vế ta có: 

\(3\left(\text{∑}\frac{1}{a^2}\right)+3\ge2\left(\text{∑}\frac{1}{a}+\text{∑}\frac{1}{ab}\right)\Leftrightarrow\text{∑}\frac{1}{a^2}\ge3\left(đ\text{pcm}\right)\)

\(\text{Dau }"="\Leftrightarrow a=b=c=1\)

3 tháng 2 2020

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

3 tháng 2 2020

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)

25 tháng 6 2017

bạn có viết đề sai ko?

Câu a dùng hằng đẳng thức mở rộng là được,tối rồi lười lắm,t giúp câu b

20 tháng 5 2018

giúp t câu b với