K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(\frac{a^{2}}{b + c} + \frac{b^{2}}{a + c} + \frac{c^{2}}{b + a} \geq \frac{\left(\left(\right. a + b + c \left.\right)\right)^{2}}{2 \left(\right. a + b + c \left.\right)} = \frac{a + b + c}{2}\)

13 tháng 8 2016

1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)

Dấu "=" xảy ra khi x = 13/2

Vậy Max P(x) = 8217/4 tại x = 13/2

2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)

3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)

Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)

\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)

 

9 tháng 12 2018

\(a\left(a^2-bc\right)+b\left(b^2-ca\right)+c\left(c^2-ab\right)=0\)

\(\Rightarrow a^3-abc+b^3-abc+c^3-abc=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\) 

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

Mà \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}\Rightarrow}a=b=c\)

Vậy \(P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1+1+1=3\)

22 tháng 9 2016

Ta có \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

+) Nếu \(a^2+b^2+c^2=2\) thì \(ab+bc+ac=\frac{-2}{2}=-1\Leftrightarrow\left(ab+bc+ac\right)^2=1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=1\)

Ta có : \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)

\(\Leftrightarrow a^4+b^4+c^2+2=4\Leftrightarrow a^4+b^4+c^4=2\)

+ Nếu \(a^2+b^2+c^2=1\) làm tương tự

15 tháng 7 2017

a+b+c=0

=> (a+b+c)2=0

=> a2+b2+c2+2ab+2bc+2ac=0

=> 2(ab+bc+ac)=-1

=> ab+bc+ac=\(\dfrac{-1}{2}\)

=> (ab+bc+ac)2=\(\dfrac{1}{4}\)

=> a2b2+b2c2+a2c2+2ab2c+2abc2+2a2bc=\(\dfrac{1}{4}\)

=> a2b2+b2c2+a2c2+2abc(a+b+c)=\(\dfrac{1}{4}\)

=> a2b2+b2c2+a2c2=\(\dfrac{1}{4}\)

Ta có: a2+b2+c2=1

=> (a2+b2+c2)2=1

=> a4+b4+c4+2a2b2+2b2c2+2a2c2=1

=> a4+b4+c4=4

9 tháng 1 2017

Năm sau em học lớp 8 em làm giùm cko

9 tháng 1 2017

ko biết làm

21 tháng 7 2018

a) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{64}-1\right)\)

\(=\dfrac{3^{64}-1}{2}\)

b) \(\left(a+b+c\right)2+\left(a-b-c\right)2+\left(b-c-a\right)2+\left(c-a-b\right)2\)

\(=2\left[\left(a+b+c\right)+\left(a-b-c\right)+\left(b-c-a\right)+\left(c-a-b\right)\right]\)

\(=2\left(a+b+c+a-b-c+b-c-a+c-a-b\right)\)

\(=2.0\)

\(=0\)

c)\(\left(a+b+c+d\right)2+\left(a+b-c-d\right)2+\left(a+c-b-d\right)2+\left(a+d-b-c\right)2\)

\(=2\left(a+b+c+d+a+b-c-d+a+c-b-d+a+d-b-c\right)\)

\(=2.4a\)

\(=8a\)

8 tháng 9 2018

a ) \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+2.0=0\)

\(\Leftrightarrow a^2+b^2+c^2=0\)

Do \(a^2\ge0;b^2\ge0;c^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=0\) ( * )

Thay * vào biểu thức M , ta được :

\(M=\left(0-1\right)^{1999}+0^{2000}+\left(0+1\right)^{2001}\)

\(=-1^{1999}+0+1^{2001}\)

\(=-1+0+1\)

\(=0\)

Vậy \(M=0\)

8 tháng 9 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc+ac+ab-1}{abc}=0\)

\(\Leftrightarrow bc+ac+ab-1=0\)

\(\Leftrightarrow bc+ac+ab=1\)

\(a^2+b^2+c^2=1\)

\(\Rightarrow bc+ac+ab=a^2+b^2+c^2\)

\(\Rightarrow2bc+2ac+2ab=2a^2+2b^2+2c^2\)

\(\Rightarrow2a^2+2b^2+2c^2-2bc-2ac-2ab=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

\(P=\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\)

\(\Rightarrow P=\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\)

\(\Rightarrow P=1+1+1=3\)

Vậy \(P=3\)

27 tháng 12 2018

\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+b+c}{a+b+c}=0\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

xét: \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\left(\text{vì a+b+c khác 0}\right)\)

\(\text{ta có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\frac{ab+bc+ac}{abc}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\frac{\left(ab+bc+ac\right).\left(a+b+c\right)-abc}{abc.\left(a+b+c\right)}=0\)

\(\Rightarrow\left(ab+bc+ac\right).\left(a+b+c\right)-abc=0\)

\(\Rightarrow\left(b+a\right).\left(c+a\right).\left(c+b\right)=0\)

\(\Rightarrow\hept{\begin{cases}b=-a\\a=-c\\c=-b\end{cases}}\)

\(M=\left(-b^{101}+b^{101}\right).\left(-c^{2017}+c^{2017}\right).\left(b^{2019}+-b^{2019}\right)=0\)

p/s: dài nhỉ =) 

16 tháng 5 2018
a>_5 b>_6 c>_7 =>2ab>_60 2ac>_70 2bc>84=> 2ab+2bc+2ac>_214 (1) lại có: a^2+b^2+c^2=125 (2) cong ve voi ve(1)va (2): (a+b+c)^2>_339 =>a+b+c>_căn339 =>min=căn339
16 tháng 5 2018

Để M=a+b+c nhỏ nhất thì a,b,c phải nhỏ nhất

mà a\(\ge\)5 , b\(\ge\)6 , c\(\ge\)7

và a\(^2\)+b\(^2\)+c\(^2\)=125

\(\Rightarrow\)a,b,c lần lượt là 5 ,6,8 (tmđk)

GTNN của M là 19