Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước tiên ta cần chứng minh :
\(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
Trong 3 số : \(\hept{\begin{cases}a-1\\b-1\\c-1\end{cases}}\) sẽ có ít nhất 2 số cùng dấu
Giả sử hai số đó là : \(a-1,b-1\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Rightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)
\(\Rightarrow2abc\ge2\left(ac+bc-c\right)\)
Giờ ta cần chứng minh : \(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow b^2-2ab+a^2+c^2-2c+1\ge0\)
\(\Leftrightarrow\left(b-a\right)^2+\left(c-1\right)^2\ge0\) ( đúng )
\(\Rightarrow\) ta có đpcm
Quay lại bài toán ban đầu ta có :
\(P=a^2+b^2+c^2+2abc+\frac{18}{ab+bc+ac}\ge2\left(ab+bc+ca\right)-1+\frac{18}{ab+bc+ca}\)
\(\ge2.2.3\sqrt{\frac{ab+bc+ca}{ab+bc+ca}}-1=11\)
Dấu " = " xảy ra khi \(a=b=c=1\)
Chúc bạn học tốt !!!
Vai trò của a, b, c là bình đẳng, không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\)
Ta có BĐT quen thuộc sau: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
Có: \(VT-VP=\left(\sqrt{a}-\sqrt{b}\right)^2\left(a+b+2\sqrt{ab}-2c\right)+\left(c-1\right)^2+2c\left(\sqrt{ab}-1\right)^2\ge0\)(vì \(c=min\left\{a,b,c\right\}\))
Từ đó \(P\ge2\left(ab+bc+ca\right)+\frac{18}{ab+bc+ca}-1\)
\(\ge2\sqrt{2\left(ab+bc+ca\right).\frac{18}{ab+bc+ca}}-1=11\)
Đẳng thức xảy ra khi a = b = c = 1
Trước tiên ta cần chứng minh:
\(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
Trong 3 số \(\left\{{}\begin{matrix}a-1\\b-1\\c-1\end{matrix}\right.\) sẽ có ít nhất 2 số cùng dấu
Giả sử 2 số đó là \(a-1,b-1\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Rightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)
\(\Rightarrow2abc\ge2\left(ac+bc-c\right)\)
Giờ ta cần chứng minh: \(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow b^2-2ab+a^2+c^2-2c+1\ge0\)
\(\Leftrightarrow\left(b-a\right)^2+\left(c-1\right)^2\ge0\) (đúng)
\(\Rightarrow\) Ta có ĐPCM
Quay lại bài toán ban đầu ta có:
\(P=a^2+b^2+c^2+2abc+\dfrac{18}{ab+bc+ca}\ge2\left(ab+bc+ca\right)-1+\dfrac{18}{ab+bc+ca}\)
\(\ge2.2.3\sqrt{\dfrac{ab+bc+ca}{ab+bc+ca}}-1=11\)
Dấu = xảy ra khi \(a=b=c=1\)
Áp dụng BĐT Cauchy ta được \(2\sqrt{bc}\le b+c\)=> \(\frac{a^2}{a+\sqrt{bc}}\ge\frac{2a^2}{2a+b+c}\)
Áp dụng BĐT tương tự ta được đẳng thức
\(\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\ge\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+c+a}+\frac{2c^2}{2c+a+b}\)
Áp dụng BĐT Cauchy ta lại có
\(\frac{2a^2}{2a+b+c}+\frac{2a+b+c}{8}\ge a;\frac{2b^2}{2b+a+c}+\frac{2b+a+c}{8}\ge b;\frac{2c^2}{2c+a+b}+\frac{2c+a+b}{8}\ge c\)
Cộng theo vế ta được
\(\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+a+c}+\frac{2c^2}{2c+a+b}\ge\frac{3}{2}\)
Vậy MinP=\(\frac{3}{2}\)
Dat \(\left(\frac{a}{b};\frac{b}{c};\frac{c}{a}\right)=\left(x;y;z\right)\)
\(\Rightarrow xyz=1\)
\(\Sigma_{cyc}\frac{1}{\frac{a}{b}+\frac{c}{a}+1}=\Sigma_{cyc}\frac{1}{x+y+1}\)
We need to prove:
\(\Sigma_{cyc}\frac{1}{x+y+1}\le1\)
\(\Leftrightarrow\Sigma_{cyc}\frac{x+y}{x+y+1}\ge2\left(M\right)\)
We have:
\(VT_M\ge\frac{\left(\Sigma_{cyc}\sqrt{x+y}\right)^2}{2\Sigma_{cyc}x+3}\)
Now we need to prove
\(\frac{\left(\Sigma_{cyc}\sqrt{x+y}\right)^2}{2\Sigma_{cyc}x+3}\ge2\)
\(\Leftrightarrow\Sigma_{cyc}\sqrt{\left(x+y\right)\left(y+z\right)}\ge\Sigma_{cyc}x+3\left(M_1\right)\)
Consider:
\(VT_{M_1}=\sqrt{\left(x+y\right)\left(y+z\right)}\ge x+y+z+xy+yz+zx\)
Now we need to prove:
\(x+y+z+xy+yz+zx\ge x+y+z+3\)
\(xy+yz+zx\ge3\) (Not fail with xyz=1)
Dau '=' xay ra khi \(\hept{\begin{cases}a=b=c=1\\x=y=z=1\end{cases}}\)
Ta có : \(ab+bc+ca=2abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z\right)^2}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)
Tương tự ta có :
\(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)
\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow P\ge\frac{1}{12}\)
Dấu " = " xảy ra khi \(x=y=z=\frac{2}{3}\)
Ta có : \(ab+bc+ca=2abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z^2\right)}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)
\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow P\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)
Theo nguyên lý diriclet ta có
Trong 3 số (a-1);(b-1);(c-1) luôn có hai số cùng dấu
Giả sử (a-1);(b-1) cùng dấu
=> \(c\left(a-1\right)\left(b-1\right)\ge0\)
=> \(abc\ge ac+bc-c\)
Lại có \(a^2+b^2\ge2ab\)
\(c^2+1\ge2c\)
Khi đó
\(P\ge2ab+2c-1+2\left(ac+bc-c\right)+\frac{18}{ab+bc+ac}\)
=> \(P\ge2\left(ab+bc+ac\right)+\frac{18}{ab+bc+ac}-1\ge2\sqrt{2.18}-1=11\)
Vậy \(MinP=11\)khii a=b=c=1