K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

Đặt: \(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)

Ta có:

\(\frac{a+1}{b^2+1}=a-\frac{ab^2-1}{b^2+1}\ge a-\frac{ab^2-1}{2b}=a-\frac{ab}{2}+\frac{1}{2b}\)

Tương tự ta có:

\(\frac{b+1}{c^2+1}\ge b-\frac{bc}{2}+\frac{1}{2c},\frac{c+1}{a^2+1}\ge c-\frac{ca}{2}+\frac{1}{2a}\)

\(\Rightarrow P\ge a+b+c-\frac{ab+bc+ca}{2}+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}+\frac{1}{2}\left(\frac{\left(1+1+1\right)^2}{a+b+c}\right)\)

\(=3-\frac{9}{6}+\frac{1}{2}.\frac{9}{3}=3\)

Dấu bằng xảy ra khi a=b=c=1

2 tháng 10 2018

mấy dạng kiểu này bạn cứ dùng cô-si ngược là ra

29 tháng 9 2016

Ta có :

\(a^2+b^2+c^2-2bc-2ca+2ab\)

\(=\left(a+b-c\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2-2bc-2ca+2ab\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge2bc+2ca-2ab\)

Dấu bằng xảy ra khi \(a+b=c\)

Mà \(\frac{5}{3}< \frac{6}{3}=2\)

\(\Rightarrow a^2+b^2+c^2< 2\)

\(\Rightarrow2bc+2ac-2ab\le a^2+b^2+c^2< 2\)

\(\Rightarrow2bc+2ac-2ab< 2\)

Do a ,b , c > 0

\(\Rightarrow\frac{2bc+2ac-2ab}{2abc}< \frac{2}{2abc}\)

\(\Rightarrow\frac{2bc}{2abc}+\frac{2ac}{2abc}-\frac{2ab}{2abc}< \frac{2}{2abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Vậy ...

29 tháng 9 2016

Ta có:\(\left(a+b-c\right)^2\ge0\)(với a,b,c > 0)

<=> \(a^2+b^2+c^2+2ab-2bc-2ca\ge0\)

<=> \(bc+ac-ab\le\frac{a^2+b^2+c^2}{2}=\frac{5}{6}< 1\)

Chia 2 vế của bđt cho abc >0 ta dc

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

18 tháng 5 2017

đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)

quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).

nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)

mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)

nên x+ y + z \(\ge\)6 (2)

từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.

dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.

vậy Min S = 48.

19 tháng 5 2017

hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai

17 tháng 8 2019

\(VT=\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\)

\(=1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\)

\(=3-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)\)

Áp dụng bất đẳng thức Cauchy :

\(VT\ge3-\left(\frac{a^2}{2a}+\frac{b^2}{2b}+\frac{c^2}{2c}\right)=3-\left(\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)

\(=3-\frac{a+b+c}{2}=3-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

17 tháng 8 2019

\(ab+ac+bc\le a^2+b^2+c^2\\ \Rightarrow3\left(ab+ac+bc\right)\le a^2+b^2+c^2+2\left(ab+ac+bc\right)\\ \Rightarrow3\left(ab+ac+bc\right)\le\left(a+b+c\right)^2=9\\ \Rightarrow ab+ac+bc\le3\\ \Rightarrow2\left(ab+ac+bc\right)\le6\)

Áp dụng BDT Cô-si với 3 số dương:

\(\Rightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{9}{a^2+1+b^2+1+c^2+1}\\ =\frac{9}{a^2+b^2+c^2+3}=\frac{9}{a^2+b^2+c^2+6-3}\\ \ge\frac{9}{a^2+b^2+c^2+2\left(ab+ac+bc\right)-3}=\frac{9}{\left(a+b+c\right)^2-3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1