Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\text{VT}=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}\)
\(=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)
\(=(a+b+c)-2\left(\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\right)\)
Áp dụng BĐT Cauchy cho các số dương:
\(\text{VT}\geq (a+b+c)-2\left(\frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\right)\)
\(\Leftrightarrow \text{VT}\geq (a+b+c)-\frac{2}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)
Áp dụng BĐT Cauchy tiếp:
\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}\)
\(=\frac{2(ab+bc+ac)+3}{3}\leq \frac{2.\frac{(a+b+c)^2}{3}+3}{3}\)
Do đó: \(\text{VT}\geq (a+b+c)-\frac{2}{3}.\frac{2.\frac{(a+b+c)^2}{3}+3}{3}=1\) do $a+b+c=3$
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
Đặt \(A\left(a;a^3-3a^2+2\right);B\left(b;b^3-3b^2+2\right);a\ne b\)
Hệ số góc của tiếp tuyến với (C) tại A, B là :
\(k_A=y'\left(x_A\right)=3a^2-6a;k_B=y'\left(x_B\right)=3b^2-6b\)
Tiếp tuyến của (C) tại A và B song song với nhau khi và chỉ khi \(k_A=k_B\)
\(\Leftrightarrow3a^2-6a=3b^2-6b\Leftrightarrow\left(a-b\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow b=2-a\)
Độ dài đoạn AB là :
\(AB=\sqrt{\left(a-b\right)^2+\left[a^3-b^3-3\left(a^2-b^2\right)\right]^2}\)
\(=\sqrt{\left(a-b\right)^2+\left(a-b\right)^2.\left[a^2+ab+b^2-3\left(a+b\right)\right]^2}\)
\(=\sqrt{4\left(a-1\right)^2+4\left(a-1\right)^2\left[\left(a-1\right)^2-3\right]^2}\)
Đăth \(\left(a-1\right)^2=t\) mà \(AB=4\sqrt{2}\Leftrightarrow t+t\left(1-3\right)^2=8\Leftrightarrow\left(t-4\right)\left(t^2-2t+2\right)=0\)
\(\Leftrightarrow t=4\Rightarrow\left[\begin{array}{nghiempt}a-1=2\\a-1=-2\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}a=3\\a=-1\end{array}\right.\)
* Với \(a=3\Rightarrow b=-1\Rightarrow A\left(3;2\right);B\left(-1;-2\right)\)
* Với \(a=1\Rightarrow b=3\Rightarrow A\left(-1;-2\right);B\left(3;2\right)\)
Vậy \(A\left(-1;-2\right);B\left(3;2\right)\) hoặc \(A\left(3;2\right);B\left(-1;-2\right)\)
\(a^2+4b^2=23ab\Rightarrow a^2+4ab+4b^2=27ab\Rightarrow\left(a+2b\right)^2=27ab\)
\(\Rightarrow\dfrac{\left(a+2b\right)^2}{9}=3ab\)\(\Rightarrow\left(\dfrac{a+2b}{3}\right)^2=3ab\)
Lấy logarit cơ số c hai vế:
\(log_c\left(\dfrac{a+2b}{3}\right)^2=log_c\left(3ab\right)\)
\(\Rightarrow2log_c\dfrac{a+2b}{3}=log_c3+log_ca+log_cb\)
\(\Rightarrow log_c\dfrac{a+2b}{3}=\dfrac{1}{2}\left(log_ca+log_cb+log_c3\right)\)
a. \(y=\sqrt[3]{1-x}\) có tập xác định \(x\in R\)
b. \(y=\log_3\left(x^2-3x\right)\)
Điều kiện : \(x^2-3x>0\Leftrightarrow\left[\begin{array}{nghiempt}x< 0\\x>0\end{array}\right.\)
\(\Leftrightarrow\) TXĐ \(D=\left(-\infty;0\right)\cup\left(3;+\infty\right)\)
c. \(y=\log_{x^2-4x+4}2013\)
Điều kiện : \(\begin{cases}x^2-4x+4>0\\x^2-4x+4\ne1\end{cases}\)\(\Leftrightarrow\begin{cases}\left(x-2\right)^2>0\\x^2-4x+3>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ne2\\x\ne1\\x\ne3\end{cases}\)
Vậy tập xác định là \(D=R\backslash\left\{1;2;3\right\}\)
Đặt \(t=2^x\left(t>0\right)\), xét hàm số \(F\left(t\right)=\frac{a}{3}t^3+\frac{b}{3}t^2+ct\) khả vi liên tục trên \(\left(0;+\infty\right)\) và \(F\left(1\right)-F\left(0\right)=\frac{a}{3}+\frac{b}{2}+c=0\)
Theo định lí Laggange thì tồn tại ít nhất 1 số \(k\in\left(0;1\right)\) sao cho :
\(F'\left(k\right)=ak^2+bk+c=0\)
Do đó \(x=\log_2k\) là nghiệm của phương trình đã cho
a) Gọi \(z_1,z_2\) là các nghiệm của phương trình với \(\left|z_1\right|=1\). Từ \(z_2=\frac{c}{a}.\frac{1}{z_1}\) kéo theo \(\left|z_2\right|=\left|\frac{c}{a}\right|.\frac{1}{\left|z_1\right|}=1\)
vì \(z_1+z_2=-\frac{b}{a},\left|a\right|=\left|b\right|\), ta có \(\left|z_1+z_2\right|^2=1\)
Hệ thức tương đương với
\(\left(z_1+z_2\right)\left(\overline{z_1}+\overline{z_2}\right)=1\) tức là \(\left(z_1+z_2\right)\left(\frac{1}{z_1}+\frac{1}{z_2}\right)=1\)
\(\left(z_1+z_2\right)^2=z_1z_2\)
hay \(\left(-\frac{b}{a}\right)^2=\frac{c}{a}\Rightarrow b^2=ac\)
b) Theo câu a) \(b^2=ac,c^2=ab\). Nhân các hệ thức được \(b^2c^2=a^2bc\Rightarrow a^2=bc\)
Do đó \(a^2+b^2+c^2=ab+bc+ca\)
Hệ tương đương với :
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tức là
\(\left(a-b\right)^2+\left(b-c\right)^2+2\left(a-b\right)\left(b-c\right)+\left(c-a\right)^2=2\left(a-b\right)\left(b-c\right)\)
Kéo theo
\(\left(a-c\right)^2=\left(a-b\right)\left(b-c\right)\)
Lấy giá trị tuyệt đối, được \(\beta^2=\gamma\alpha\)
Ở đây \(\alpha=\left|b-c\right|,\beta=\left|c-a\right|,\gamma=\left|a-b\right|\)
Tương tự được :
\(\alpha^2=\beta\gamma,\gamma^2=\alpha\beta,\)
Cộng các hệ thức, được :
\(\alpha^2+\beta^2+\gamma^2=\alpha\beta+\beta\gamma+\gamma\alpha\)
Tức là (\(\left(\alpha-\beta\right)^2+\left(\beta-\gamma\right)^2+\left(\gamma-\beta\right)^2=0\)
Do đó : \(\beta=\alpha=\gamma\)
a. \(\log_{2011}2012\) và \(\log_{2012}2013\)
Ta luôn có : \(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi \(n>1\) (*)
Thật vậy :
- Ta có : \(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\Rightarrow\log_{n+1}\left(n+1\right)^2>\log_{n+1}\left[n\left(n+2\right)\right]\)
hay :
\(2>\log_{n+1}n+\log_{n+1}\left(n+2\right)\) (1)
- Áp dụng Bất đẳng thức Cauchy, ta có :
\(\log_{n+1}n+\log_{n+1}\left(n+1\right)>2\sqrt{\log_{n+1}n.\log_{n+1}\left(n+2\right)}\) (2)
((2) không xảy ra dấu "=" vì \(\log_{n+1}n\ne\log_{n+1}\left(n+2\right)\) )
- Từ (1) và (2) \(\Rightarrow2>2\sqrt{\log_{n+1}n.\log_{n+1}\left(n+2\right)}\)
\(\Rightarrow1>\log_{n+1}n.\log_{n+1}\left(n+2\right)\)
\(\Leftrightarrow\frac{1}{\log_{n+1}n}>\log_{n+1}\left(n+2\right)\)
\(\Leftrightarrow\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\)
Áp dụng (*) với \(n=2011\Rightarrow\log_{2011}2012>\log_{2012}2013\)
b. \(\log_{13}150\) và \(\log_{17}290\)
Ta có : \(\log_{12}150< \log_{13}169=2=\log_{17}289< \log_{17}290\Rightarrow\log_{13}150< \log_{17}290\)
c. \(\log_34\) và \(\log_{10}11\)
Ta luôn có : \(\log_a\left(a+1\right)>\log_{a+1}\left(a+2\right)\) với \(0< a\ne1\) (*)
Tương tự câu (a), áp dụng liên tiếp (*) ta được :
\(\log_34>\log_45>\log_56>\log_67>\log_78>\log_89>\log_910>\log_{10}11\)
hay \(\log_34>\log_{10}11\)
Đặt \(\left(a^2;b^2;c^2\right)\rightarrow\left(x;y;z\right)\)thì bài toán trở thành:
Cho \(x;y;z\in\left[0;1\right]\)và không đồng thời bằng 0.Cm:\(\dfrac{x^2y+y^2z+z^2x+3}{x^{1006}+y^{1006}+z^{1006}}\ge2\)
Ta có: \(x^{1006}\le x^2\) vì \(\Leftrightarrow x^2\left(1-x^{1004}\right)\ge0\)(đúng vì \(0\le x\le1\))
Tương tự ta có: \(x^{1006}+y^{1006}+z^{1006}\le x^2+y^2+z^2\)
( Dấu = xảy ra ở đây là cả 3 số bằng 1 hoặc 2 số bằng 1, 1 số bằng 0)
Lại có:\(x^2y\ge x^2y^2\Leftrightarrow x^2y\left(1-y\right)\ge0\left(true\right)\)
\(\Rightarrow x^2y+y^2z+z^2x\ge x^2y^2+y^2z^2+z^2x^2\)
( Dấu = xảy ra ở đây là cả 3 số bằng 1, hoặc 2 số bằng 1,1 số bằng 0 ;hoặc chỉ cần 1 số bằng 0,1 số bằng 1)
Giờ ta cần chứng minh:
\(\dfrac{x^2y^2+y^2z^2+z^2x^2+3}{x^2+y^2+z^2}\ge2\Leftrightarrow\sum\left(x^2-1\right)\left(y^2-1\right)\ge0\)(đúng)
(Dấu = xảy ra ở đây là chỉ cần 2 số bằng 1)
Kết hợp cả 3 TH dấu = ta được:BĐT xảy ra khi cả 3 số bằng 1 hoặc 2 số bằng 1; 1 số bằng 0
Đó là x;y;z.Khi đổi về a;b;c thì còn hoán vị cả \(-1;1\)
P/s: rắc rối mỗi cái điểm rơi :V