Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)
\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)
\(\frac{2a^2-2ac+c^2}{2b^2-2bc+c^2}=\frac{a-c}{b-c}\)
\(\Leftrightarrow2a^2b-2a^2c+ac^2-bc^2-2ab^2+2b^2c=0\)
\(\Leftrightarrow2a\left(ab-ac+\frac{c^2}{2}\right)-bc^2-2ab^2+2bc^2=b\left(2ac-c^2-2ab+2bc\right)=0\)(đúng)
=> đpcm
Từ \(c^2+2\left(ab-bc-ac\right)=0.\)
\(\Rightarrow c^2+2ab-2bc-2ac=0\)
\(\Rightarrow\frac{c^2}{2}+ab-bc-ac=0\)
\(\Rightarrow bc=\frac{c^2}{2}+ab-ac\)
Có : \(2a\left(ab-ac+\frac{c^2}{2}\right)-bc^2-2ab^2+2bc^2\)
\(=2abc-bc^2-2ab^2+2bc^2\)
\(=-b\left(-2ac+c^2+2ab-2bc\right)\)
\(=-b\left[c^2+2\left(ab-bc-ac\right)\right]=-b.0=0\)\(\left(đpcm\right)\)
Lời giải :
\(B=2bc\left(b+2c\right)+2ac\left(c-2a\right)-2ab\left(a+2b\right)-7abc\)
\(B=2b^2c+4bc^2+2ac^2-4a^2c-2ab\left(a+2b\right)-7abc\)
\(B=abc+2b^2c-4a^2c-8abc-2ab\left(a+2b\right)+2ac^2+4bc^2\)
\(B=bc\left(a+2b\right)-4ac\left(a+2b\right)-2ab\left(a+2b\right)+2c^2\left(a+2b\right)\)
\(B=\left(a+2b\right)\left(bc-4ac-2ab+2c^2\right)\)
\(B=\left(a+2b\right)\left[c\left(2c+b\right)-2a\left(2c+b\right)\right]\)
\(B=\left(a+2b\right)\left(2c+b\right)\left(c-2a\right)\)