Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0
=> Hoặc a=-b hoặc b=-c hoặc c=-a
Ko mất tổng quát, g/s a=-b
a) Ta có: vì a=-b thay vào ta được:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
=> đpcm
b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)
=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)
2 ) b )
\(a+b+c+d=0\)
\(\Leftrightarrow a+b=-\left(c+d\right)\)
\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a=-c^3-3c^2d-3d^2c-d^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a+c^3+3c^2d+3d^2c+d^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\) \(\left(đpcm\right)\)
Có: \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=-1\) (do \(a^2+b^2+c^2=1\) )
\(\Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab.bc+2bc.ca+2ca.ab=\dfrac{1}{4}\)
\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)
\(\Leftrightarrow \left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\) (do \(a+b+c=0\))
Lại có: \(M=a^4+b^4+c^4\)
\(=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2 +b^2c^2+c^2a^2\right)\)
\(=1-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\) (do \(a^2+b^2+c^2=1\))
\(=1-2.\dfrac{1}{4}\)(do \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\))
\(=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Vậy \(M=\dfrac{1}{2}\)
Với \(a,b,c\ne0\); \(a+b+c\ne0\) , ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+abc+bc^2+c^2a=abc\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+bc^2+c^2a=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Không mất tính tổng quát, ta lấy \(a=-b\), ta có:
\(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{\left(-b\right)^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}\)
\(=\frac{-1}{b^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\) (1)
Ta có:\(\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{\left(-b\right)^{2005}+b^{2005}+c^{2005}}\)
\(=\frac{1}{-b^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\) (2)
Từ (1), (2), suy ra \(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{a^{2005}+b^{2005}+c^{2005}}\)
Cái chỗ không mất tính tổng quát đấy, là do a, b, c bình đẳng nhau.
Theo t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)
\(\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\left(1\right)\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow x^2+y^2+z^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=0\Leftrightarrow xy+yz+xz=0\left(đpcm\right)\)
Hướng suy nghĩ của bạn đúng rồi.
Lời giải:
Phản chứng. Giả sử $y^2< xz$.
$0< y^2< xz$
$0< b^2< ac$
$\Rightarrow b^2y^2< xzac$
Theo đề bài ta có:
$2by=az+cx$
$\Rightarrow (az+cx)^2=4b^2y^2$
$\Leftrightarrow a^2z^2+c^2x^2+2acxz=4b^2y^2$
$a^2z^2+c^2x^2=4b^2y^2-2acxz< 4xzac-2acxz=2acxz$
$\Leftrightarrow (az-cx)^2< 0$ (vô lý)
Do đó điều giả sử là sai.
Tức là $y^2\geq xz$
Xét: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)
\(\Leftrightarrow\left(a^2b+a^2b\right)+\left(abc+b^2c\right)+\left(bc^2+c^2a\right)+\left(abc+a^2c\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+c^2+ca\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(\left(ab+bc\right)+\left(c^2+ca\right)\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\)
Với a = - b thì thế vào phương trình thứ 2 ta được
\(\Leftrightarrow a^3+b^3+c^3=2^9\)
\(\Leftrightarrow c^3=2^9\)
\(\Leftrightarrow c=8\)
\(\Rightarrow P=a^{2009}+b^{2009}+c^{2009}=c^{2009}=8^{2009}\)
Tương tự với b = - c và c = - a ta đều tìm được P = 82009