Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt:
\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=k\Leftrightarrow\left\{{}\begin{matrix}a=2015k\\b=2016k\\c=2017k\end{matrix}\right.\)
Nên \(4\left(a-b\right)\left(b-c\right)=4\left(2015k-2016k\right)\left(2016k-2017k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)\(\left(c-a\right)^2=\left(2017k-2015k\right)^2=4k^2\)
Ta c dpcm
Đặt \(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}\)= k
\(\Rightarrow\) a = 2015 . k
b = 2016 . k
c = 2017 . k
\(\Rightarrow\) 4( a - b ) . ( b - c) = 4( 2015.k - 2016.k) .( 2016.k - 2017.k )
= 4( -k) (-k) = 4k2 (1)
( c - a)2 =( 2017.k -2015.k)2= (2k)2= 4k2(2)
Từ (1) và ( 2) \(\Rightarrow\)4( a - b).( b - c ) = (c - a )2
Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)
Thế vào bài toán trở thành
Cho: \(\frac{x+z}{xz}+\frac{x+y}{xy}+\frac{y+z}{yz}=2013\left(1\right)\)
Tính \(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Từ (1) ta có
\(\left(1\right)\Leftrightarrow\frac{xy+yz+zx+yz+xy+zx}{xyz}=2013\)
\(\Leftrightarrow\frac{2\left(xy+yz+zx\right)}{xyz}=2013\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)
Ta lại có
\(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)
\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)
\(\Rightarrow M=\frac{2013}{2}\)
Gọi \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\left(1\right)\)
Thay (1) vào M ta có :
M=4(2014k-2015k)(2015k-2016k)-(2016k-2014k)2
=>M=4.-k.-k-4k2
=>M=4k2-4k2=0
Vậy M = 0