Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(s=\frac{105}{105+ab+a}+\frac{ab}{a.\left(bc+b+1\right)}+\frac{a}{ab+a+105}=\frac{105}{105+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{ab+a+105}\)
\(s=\frac{105}{105+ab+a}+\frac{ab}{105+ab+a}+\frac{a}{ab+a+105}=\frac{105+ab+a}{105+ab+a}=1\)
Thay 105 = abc vào biểu thức S ta được:
\(S=\frac{abc}{a.\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=\frac{bc+b+1}{bc+b+1}=1\)
Vậy S=1
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\left(abc=105\right)\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\) \(\left(abc=105\right)\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
Do \(abc=2018,bc+b+1\ne0\) nên thay vào biểu thức A ta có :
\(A=\frac{2018}{abc+bc+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}=1\)
Vậy : \(A=1\) với a,b,c thỏa mãn đề.
\(A=\frac{2018}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)
\(=\frac{abc}{abc+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{ab+a+abc}\)
\(=1\)
Vậy ...
vì abc=105 nên thay 105 bằng abc ta được:
\(s=\frac{abc}{a\left(bc+b+1\right)}\)+\(\frac{b}{bc+b+1}\)+\(\frac{a}{ab+a+abc}\)
\(s=\frac{bc}{bc+b+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{1}{b+1+bc}\)=\(\frac{bc+b+1}{bc+b+1}\)=1
Cho mình 1 l i k e nha..............
đúng rồi đó mình chắc chắn 100