Cho 3 số a,b,c thỏa mãn a + b + c = 2. tìm giá trị nhỏ nhất của biểu thức :

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2021

TL :

x - y = 2

HT

9 tháng 11 2021

TL:

2 nhé 

nhầm

s

-HT-

10 tháng 4 2018

Áp dụng BĐT Cô si 3 số không âm

Ta có: \(\frac{a^2}{^3}+\frac{1}{a}+\frac{1}{a}\ge3\sqrt[3]{\frac{1}{b^3}}=\frac{3}{b}\)

Tương tự: \(\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\ge\frac{3}{b}\)

                 \(\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\ge\frac{3}{a}\)

\(\Rightarrow\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=1\)

6 tháng 6 2020

\(\frac{2x}{3}+\frac{3x-1}{6}=\frac{x}{2}\)

\(\Leftrightarrow\frac{2x}{3}+\frac{3x-2}{6}-\frac{x}{2}=0\)

\(\Leftrightarrow\frac{4x}{6}+\frac{3x-2}{6}-\frac{3x}{6}=0\)

\(\Leftrightarrow\frac{4x+3x-2-3x}{6}=0\)

\(\Rightarrow4x-2=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(x=\frac{1}{2}\)

6 tháng 6 2020

hàng số 2 bị sai rồi .\(\frac{2X}{3}+\frac{3X-1}{6}-\frac{X}{2}=0\)

1 tháng 5 2019

\(x^2+y^2=3\frac{1}{3}xy\)hay \(x^2+y^2=\frac{10}{3}xy\)

\(\Rightarrow x^2+2xy+y^2=\frac{16}{3}xy\)\(\Rightarrow\left(x+y\right)^2=\frac{16}{3}xy\)

tương tự : \(\left(x-y\right)^2=\frac{4}{3}xy\)

\(\Rightarrow\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{1}{4}\Rightarrow\orbr{\begin{cases}\frac{x-y}{x+y}=\frac{1}{2}\\\frac{x-y}{x+y}=\frac{-1}{2}\end{cases}}\)

vì x > y > 0 nên x - y > 0 \(\Rightarrow\frac{x-y}{x+y}>0\)

Vậy \(\frac{x-y}{x+y}=\frac{1}{2}\)

1 tháng 5 2019

Xét\(x^2+2xy+y^2=\frac{10}{3}xy+2xy=\frac{16}{3}xy\)

     \(x^2-2xy+y^2=\frac{10}{3}xy-2xy=\frac{4}{3}xy\)

Từ đó ta được:

\(\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{\left(\frac{4}{3}xy\right)}{\left(\frac{16}{3}xy\right)}=\frac{1}{4}\)

\(\Rightarrow\sqrt{\frac{\left(x-y\right)^2}{\left(x+y\right)^2}}=\frac{1}{2}\Rightarrow\left|\frac{x-y}{x+y}\right|=\frac{1}{2}\)

Hihi

đến đây bạn tự làm nốt nha

^-^ Học tốt

19 tháng 10 2023

\(C=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=\left(x^{16}-1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=\left(x^{32}-1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=x^{64}-1-x^{64}\)

\(C=-1\)

Vậy gtri của C không phụ thuộc vào x 

21 tháng 11 2023

a) Δ��� Tam giác ABC vuông cân nên góc B= góc C = 45 độ

Tam giácBHE vuông tại H có góc BEH + góc B = 90 độ

Suy ra góc BEH = 90 độ - 45 độ = 45 độ nên góc B= góc BEH = 45 độ

Vậy tam giác BEH vuông tại H

b) Chứng minh tương tự như câu a ta được tam giác CFG vuông tại G nên GF=GC và HB=HE

Lại có BH=HG=GC suy ra EH=HG=GF và EH//FG ( cùng vuông góc với BC)

Tứ giác EFGH có EH//FG, EH=FG

=>tứ giác EFGH là hình bình hành 

Xét hình bình hành có một góc vuông là góc H nên là hình chữ nhật

Mà hình chữ nhật có hai cạnh kề bằng nhau là EH=HG nên là hình vuông

Vậy EFGH là hình vuông

 

21 tháng 11 2023

a) Δ���ΔABC vuông cân nên �^=�^=45∘.B=C=45.

Δ���ΔBHE vuông tại H có ���^+�^=90∘BEH+B=90

Suy ra ���^=90∘−45∘=45∘BEH=9045=45 nên �^=���^=45∘B=BEH=45.

Vậy Δ���ΔBEH vuông cân tại �.H.

b) Chứng minh tương tự câu a ta được Δ���ΔCFG vuông cân tại G nên ��=��GF=GC và ��=��HB=HE

Mặt khác ��=��=��BH=HG=GC suy ra ��=��=��EH=HG=GF và ��EH // ��FG (cùng vuông góc với ��)BC)

Tứ giác ����EFGH có ��EH // ��,��=��FG,EH=FG nên là hình bình hành.

Hình bình hành ����EFGH có một góc vuông �^H nên là hình chữ nhật

Hình chữ nhật ����EFGH có hai cạnh kề bằng nhau ��=��EH=HG nên là hình vuông.

28 tháng 3 2019

\(A=\frac{a\left(1+a\right)+\left(2-a\right)\left(1-a\right)}{\left(2-a\right)\left(1+a\right)}=\frac{2a^2-2a+2}{-a^2+a+2}\)

Ta có: \(A=\frac{2\left(a^2-a+1\right)}{-a^2+a+2}=\frac{2\left[\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\right]}{-a^2+a+2}\ge\frac{3}{-2\left(a^2-a-2\right)}\)(làm tắt tí)

\(=\frac{3}{-2\left[\left(a-\frac{1}{2}\right)^2-\frac{9}{4}\right]}=\frac{3}{-2\left(a-\frac{1}{2}\right)^2+\frac{9}{2}}\ge\frac{3}{\frac{9}{2}}=\frac{2}{3}\)

Max tương tự.

28 tháng 3 2019

Max có thể làm theo cách này cx ok nè:Câu hỏi của Huyền Bùi - Toán lớp 8 - Học toán với OnlineMath

22 tháng 7 2017

22 tháng 7 2017

x=-y nữa chứ