\(\frac{a^5+b^5+c^5}{5}=abc.\frac{a^2+b^2+c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 6 2020

Lời giải:

a) Thay $a+b=-c$ ta có:

\(a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-a^2b^2(a+b)-b^2c^2(b+c)-c^2a^2(c+a)\)

\(=(a^2+b^2+c^2)[(a+b)^3-3ab(a+b)+c^3]+a^2b^2c+b^2c^2a+c^2a^2b\)

\(=(a^2+b^2+c^2)(-c^3+3abc+c^3]+abc(ab+bc+ac)\)

\(=abc(3a^2+3b^2+3c^2+ab+bc+ac)\)

\(=abc.\left(\frac{5}{2}(a^2+b^2+c^2)+\frac{a^2+b^2+c^2+2ab+2bc+2ac}{2}\right)\)

\(=abc[\frac{5}{2}(a^2+b^2+c^2)+\frac{(a+b+c)^2}{2}]=\frac{5abc(a^2+b^2+c^2)}{2}\) (đpcm)

b) Áp dụng kết quả $a^3+b^3+c^3=3abc$ đã làm ở phần a và điều kiện đề bài $a+b+c=0$ ta có:

\(a^7+b^7+c^7=(a^4+b^4+c^4)(a^3+b^3+c^3)-a^3b^3(a+b)-b^3c^3(b+c)-c^3a^3(c+a)\)

\(=3abc(a^4+b^4+c^4)+a^3b^3c+b^3c^3a+c^3a^3b\)

\(=abc(3a^4+3b^4+3c^4+a^2b^2+b^2c^2+c^2a^2)(1)\)

Mà:
\(a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)\)

\(=[(a+b+c)^2-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)\)

\(=4(ab+bc+ac)^2-2a^2b^2-2b^2c^2-2c^2a^2=2(a^2b^2+b^2c^2+c^2a^2)+8abc(a+b+c)\)

\(=2(a^2b^2+b^2c^2+c^2a^2)\)

\(\Rightarrow \frac{a^4+b^4+c^4}{2}=a^2b^2+b^2c^2+c^2a^2(2)\)

Từ $(1);(2)\Rightarrow a^7+b^7+c^7=abc(3a^4+3b^4+3c^4+\frac{a^4+b^4+c^4}{2})=\frac{7abc(a^4+b^4+c^4)}{2}$ (đpcm)

cảm ơn bạn rất nhiều

 

21 tháng 3 2019

Ý 3 bạn bỏ dòng áp dụng....ta có nhé

\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )

Dấu " = " xảy ra <=> a=b=c=d=0

6) Sai đề

Sửa thành:\(x^2-4x+5>0\)

\(\Leftrightarrow\left(x-2\right)^2+1>0\)

7) Áp dụng BĐT AM-GM ta có:

\(a+b\ge2.\sqrt{ab}\)

Dấu " = " xảy ra <=> a=b

\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)

Chứng minh tương tự ta có:

\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)

\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)

Dấu " = " xảy ra <=> a=b=c

Cộng vế với vế của các BĐT trên ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)

Dấu " = " xảy ra <=> a=b=c

21 tháng 3 2019

1)\(x^3+y^3\ge x^2y+xy^2\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)

Dấu " = " xảy ra <=> x=y

2) \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> x=y

3) Áp dụng BĐT AM-GM ta có:

\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)

\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)

\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)

Cộng vế với vế của các bất đẳng thức trên ta được:

\(a^2+b^2+1\ge ab+a+b\)

Dấu " = " xảy ra <=> a=b=1

4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)

Dấu " = " xảy ra <=> a=b=c=1/2

21 tháng 3 2019

\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)
 

22 tháng 11 2017

Mk cx đang định hỏi câu này

1. Tìm số nguyên n sao cho phân thức \(\frac{n+2}{n^2+4}\) có giá trị là số nguyên 2. Cho x + y + z = xy + yz + zx = 0 Tính giá trị của biểu thức B = x100 + y101 + z102 3. Cho các số a, b, c thỏa mãn: a(a - b) + b(b - c) + c(c - a) = 0 Tìm GTNN của biểu thức N = a3 + b3 + c3 - 3abc + 3ab - 3c +5 4. Tìm các số nguyên x, y, z thỏa mãn x - y - z = -3 và x2 - y2 - z2 = 1 5. Cho ba số a, b, c thỏa mãn a2(b - c) + b2(c - a) + c2(a - b) = 0. CMR...
Đọc tiếp

1. Tìm số nguyên n sao cho phân thức \(\frac{n+2}{n^2+4}\) có giá trị là số nguyên
2. Cho x + y + z = xy + yz + zx = 0
Tính giá trị của biểu thức B = x100 + y101 + z102
3. Cho các số a, b, c thỏa mãn: a(a - b) + b(b - c) + c(c - a) = 0
Tìm GTNN của biểu thức N = a3 + b3 + c3 - 3abc + 3ab - 3c +5
4. Tìm các số nguyên x, y, z thỏa mãn x - y - z = -3 và x2 - y2 - z2 = 1
5. Cho ba số a, b, c thỏa mãn a2(b - c) + b2(c - a) + c2(a - b) = 0. CMR trong ba số a, b, c có ít nhất hai số bằng nhau
6. Cho ba số a, b, c khác 0 thỏa mãn đẳng thức \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
7. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
8. CMR:
a) a2 ( a + 1) + 2a ( a + 1) chia hết cho 6 với a thuộc Z
b) x2 + 2x + 2 > 0 với x thuộc Z
c) -x2 + 4x - 5 < 0 với x thuộc Z
9. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
10. Tìm các số nguyên x, y thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
11. Tìm giá trị nguyên của x, y trong đẳng thức: 2x3 + xy = 7
12. Tìm GTNN của biểu thức P =x4 + 2x3 + 3x2 + 2x + 1

0