K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

$\le $

21 tháng 4 2016

Vì \(a\le1=>a.a\le1.a=>a^2\le a\)

\(b\le1=>b.b\le1.b=>b^2\le b\)

\(c\le1=>c.c\le1.c=>c^2\le c\)

=>\(a^2+b^2+c^2\le a+b+c\)

Vì a+b+c=2

=>\(a^2+b^2+c^2\le2\)

=>ĐPCM

4 tháng 2 2020

\(0< a< 1\Rightarrow a^2< a\)

Tương tự: \(b^2< b;c^2< c\)

=> a^2+b^2+c^2<a+b+c=2

4 tháng 2 2020

Ta có: \(0< a< 1\)

\(\Rightarrow a-1< 0\)

\(\Rightarrow a^2-a< 0\left(1\right)\)

Tương tự ta có: \(0< b< 1\Rightarrow b^2-b=a\left(2\right)\)

Và: \(0< c< 1\Rightarrow c^2-c< 0\left(3\right)\)

Cộng: \(\left(1\right)\left(2\right)\left(3\right)\) vế theo vế ta được:

\(a^2+b^2+c^2-a-b-c< 0\)

\(\Leftrightarrow a^2+b^2+c^2< a+b+c\)

\(\Leftrightarrow a^2+b^2+c^2< 2\left(a+b+c=2\right)\)

5 tháng 5 2017

\(0< a,b,c< 1\) nên

\(\Rightarrow\left\{{}\begin{matrix}a^2< a\\b^2< b\\c^2< c\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< a+b+c=2\)

24 tháng 6 2020

bạn ơi tại sai a^2 lại nhỏ hơn a , mình ko hiểu lắm

 

13 tháng 1 2020

Ta có: 0 <  a < 1 ; 0 < b < 1 ; 0 < c < 1 

\(\Rightarrow\hept{\begin{cases}a\left(a+1\right)< 0\\b\left(b+1\right)< 0\\c\left(c+1\right)< 0\end{cases}}\)

Cộng vế với vế. Ta được:

\(a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)< 0\)

\(a^2+a+b^2+b+c^2+c< 0\)

\(a^2+b^2+c^2< a+b+c\)

Mà a + b + c = 2

\(\Rightarrow a^2+b^2+c^2< 2\left(đpcm\right)\)

P/s: Không chắc đâu nhé :D

7 tháng 5 2020

Bằng 0=

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

25 tháng 12 2018

Sửa đề: \(a+b+c\le6\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{6}=\frac{3}{2}\)

                                                             đpcm