Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 29.19 - 29.13 - 19.29 - 19.13
= (29.19 - 19.29) - (29.13 - 19.13)
= 0 - 13.(29 - 19) = 0 - 13. 10
= 0 - 130 = -130
Đọc tiếp...Từ: \(a+b+c=1\Leftrightarrow a=1-b-c\)
Mà theo đề bài:
\(a\le b+1\le c+2\)
\(\Rightarrow1-b-c\le b+1\le c+2\)
\(\Rightarrow2\left(c+2\right)\ge1-b-c+b+1\)
\(\Rightarrow2c+4\ge2-c\Leftrightarrow3c+4\ge2\Leftrightarrow3c\ge-2\Leftrightarrow c\ge-\frac{2}{3}\)
Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
Mà \(a^2+b^2+c^2\ge0\)nên \(2\left(ab+bc+ac\right)\le0\)
\(\Rightarrow ab+bc+ac\le0\left(đpcm\right)\)
Ta có : a + b + c = 0
\( \implies\) b + c = - a ; a + b = - c
Ta có : ab + 2bc + 3ca
= ab + 2bc + ca + 2ca
= ( ab + ca ) + ( 2bc + 2ca )
= a ( b + c ) + 2c ( a + b )
= a ( - a ) + 2c ( - c )
= - a2 - 2c2
= - ( a2 + 2c2 ) ( * )
Mà : a2 \(\geq\) 0 ; 2c2 \(\geq\) 0
\( \implies\) a2 + 2c2 \(\geq\) 0 ( ** )
Từ ( * ) ; ( ** )
\( \implies\) - ( a2 + 2c2 ) \(\leq\) 0
\( \implies\) ab + 2bc + 3ca \(\leq\) 0
Đề : ab + 4bc + ca \(\le\)0
Có : a + b + c = 0 => a = - b - c
Thay vào ab + 4bc + ca \(\le\)0 ta đc:
(-b - c).b + 4bc + c.(-b - c) \(\le\) 0
=> -b2 - bc + 4bc - bc - c2 \(\le\)0
=> -b2 - c2 + 2bc \(\le\)0
=> - (b2 - 2bc + c2) \(\le\) 0
=> -(b - c)2 \(\le\) 0 (luôn đúng)
Vậy ab + 4bc + ca \(\le\) 0
ghi đề lại nha bạn. Không hiểu đề thì ai mà giúp bạn giải đươc
CẢM ƠN