Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Đặt P = ( a-b) / c + ( b-c)/a + ( c-a ) /b
Nhân abc với P ta được ; P abc = ab( a-b) + bc ( b-c) + ac ( c-a )
= ab( a-b) + bc ( a-c + b-a ) + ac ( a-c)
= ab( a-b) - bc ( a-b) - bc( c-a) + ca ( c-a)
= b ( a-b)(a-c) - c ( a-b)(c-a)
= ( b-c)(a-b)(a-c)
=> P = (b-c)(a-b)(a-c) / abc
Xét a + b +c = 0 ta được a + b = -c ; c+a = -b , b+c = -a
Đặt Q = c/(a-b) + a/ ( b-c) + b/ ( c-a)
Nhân ( b-c)(c-b)(a-c) . Q ta có : Q = c(c-a)(b-c) + a( a-b)(c-a) + b(a-b)(b-c)
Q = c(c-a)(b-c) + (a-b)(-b-c)(c-a) +b( a-b)(b-c)
Q = c(c-a)(b-c) - b(a-b)(c-a) + b(a-b)(b-c) - c( a-b)(c-a)
Q = c(c-a)( -a+2b-c) + b(a-2c+b)(a-b)
Q = - 3bc(a-b) + 3bc(c-a)
Q = 3bc ( b+c-2a)
Q = -9abc
Suy ra => Q = 9abc / (a-b)(b-c)(c-a)
Vây ta nhân P*Q = ( b-c)(a-b)(a-c) / abc * 9abc / ( a-b)(b-c)(c-a) ( gạch những hạng tử giống nhau đi)
P*Q = 9 ( đpcm)
**************************************...
Chúc bạn học giỏi và may mắn
ta có : các ước tự nhiên của p^4 là:1,p,p2,p3,p4
Giả sử tồn tại 1 số p sao cho tổng các ước của p^4 là 1 số chính phương ta có:
1+p+p2+p3+p4=k2
đến đây rồi biến đổi tiếp,dùng phương pháp chặn 2 đầu là ra
Chúc hok tốt
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow ab+bc+ca=1\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)\(=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)
\(=\left(a+c\right)\left(b+a\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{abc}\left(QĐ\right)\Leftrightarrow ac+bc+ab=1\)
\(\Rightarrow1+a^2=bc+ab+ac+a^2=b\left(a+c\right)+a\left(a+c\right)=\left(a+c\right)\left(a+b\right)\)
Tương tự: \(1+b^2=\left(a+b\right)\left(b+c\right)\); \(1+c^2=\left(a+c\right)\left(b+c\right)\)
Nhân vế với vế ta được: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\)
mà \(\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\)là số chính phương => đpcm
a)Áp dụng BDT AM-GM ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}\cdot\frac{1}{b}\cdot\frac{1}{c}}=3\sqrt[3]{\frac{1}{abc}}\)
Nhân theo vế ta có:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)
Dấu "=" xảy ra khi \(a=b=c\)