Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Áp dụng bất đẳng thức Cô-si thôi:
\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)
Dấu "=" khi a = b
2.
Vì a,b,c là ba cạnh tam giác nên dễ thấy các mẫu số dương.
Áp dụng câu 1 ta có:
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Tương tự:
\(\frac{1}{c+a-b}+\frac{1}{b+c-a}\ge\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{b+c-a}+\frac{1}{a+b-c}\ge\frac{4}{2b}=\frac{2}{b}\)
Cộng theo vế ta được:
\(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)
Dấu "=" xảy ra khi a = b = c hay tam giác đó đều.
Theo nguyện vọng đặt ẩn phụ :
Đặt b+c-a=x ; c+a-b=y ; a+b-c=z
\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)
\(\Rightarrow\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}=\frac{\left(y+z\right)^2}{4x}+\frac{\left(x+z\right)^2}{4y}+\frac{\left(x+y\right)^2}{4z}\)
Áp dụng BĐT Schwarz:
\(\frac{\left(y+z\right)^2}{4x}+\frac{\left(x+z\right)^2}{4y}+\frac{\left(x+y\right)^2}{4z}\ge\frac{\left(2\left(x+y+z\right)\right)^2}{4\left(x+y+z\right)}=x+y+z=a+b+c\)
Dấu''='' tự giải ra nhá.
P/s Bài này đặt ẩn phụ rất dài dòng, bn chỉ cần Schwarz thẳng là ra luôn
Không cần đặt ẩn phụ, ta có thể làm cách sau:
Xét \(\frac{a^2}{b+c-a}+\left(b+c-a\right)\ge2\sqrt{\frac{a^2}{b+c-a}.\left(b+c-a\right)}=2a\)
Tương tự ta chứng minh được: \(\frac{b^2}{c+a-b}+\left(c+a-b\right)\ge2b\)và \(\frac{c^2}{a+b-c}+\left(a+b-c\right)\ge2c\)
\(\Rightarrow VT+2\left(a+b+c\right)-\left(a+b+c\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow VT\ge a+b+c\)
Dấu "=" xảy ra khi: \(a=b=c\)
1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)
\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được
\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c
2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0
Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)
\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được
\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)
Cộng 3 bđt trên lại ta được đpcm
Ta có: \(a+b+c=2p\Rightarrow p=\frac{a+b+c}{2}\)
\(\Rightarrow\hept{\begin{cases}p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\\p-b=\frac{a+b+c}{2}-b=\frac{a+c-b}{2}\\p-c=\frac{a+b+c}{2}-c=\frac{a+b-c}{2}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{1}{p-a}=\frac{2}{b+c-a}\\\frac{1}{p-b}=\frac{2}{a+c-b}\\\frac{1}{p-c}=\frac{2}{a+b-c}\end{cases}}\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=\frac{2}{b+c-a}+\frac{2}{a+c-b}+\frac{2}{a+b-c}=2\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)
Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(1\right)\)
Tương tự, ta cũng có: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\left(2\right);\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\left(3\right)\)
Cộng (1),(2),(3) vế theo vế ta được:
\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" xảy ra khi a = b = c
1) Ta có pt : \(4x^2+\frac{1}{x^2}=8x+\frac{4}{x}\)
\(\Leftrightarrow4x^2+4+\frac{1}{x^2}=8x+4+\frac{4}{x}\)
\(\Leftrightarrow\left(2x+\frac{1}{x}\right)^2=4\left(2x+\frac{1}{x}\right)+4\)
\(\Leftrightarrow\left(2x+\frac{1}{x}\right)^2-4\left(2x+\frac{1}{x}\right)+4=8\)
\(\Leftrightarrow\left(2x+\frac{1}{x}-2\right)^2=8\)
Đến đây dễ rồi nhé, chia 2 TH.
\(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}}\Rightarrow\hept{\begin{cases}2c=x+y\\2a=y+z\\2b=x+z\end{cases}}\)
\(2A=\frac{2a}{b+c-a}+\frac{2b}{a+c-b}+\frac{2c}{a+b-c}\)
\(=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\ge6\)
\(\Rightarrow2A\ge6\Leftrightarrow A\ge3."="\Leftrightarrow x=y=z\)