\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2015

Câu Hỏi Tương Tự của Trương Diệu Ngọc nha !

MERRY CHRISMAS !Đoàn Văn Nam

27 tháng 7 2020

Bài làm:

Ta có: \(ab.bc=\frac{3}{5}.\frac{4}{5}\Leftrightarrow ab^2c=\frac{12}{25}\)

\(\Rightarrow ab^2c\div ac=\frac{12}{25}\div\frac{3}{4}\)

\(\Rightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)

Thay vào ta tính được a và b

b,c tương tự a

27 tháng 7 2020

a, \(ab.bc.ca=\frac{3}{4}.\frac{4}{5}.\frac{3}{4}\)

\(\left(a.b.c\right)^2=\left(\frac{3}{5}\right)^2\)

\(a.b.c=\frac{3}{5}\)

\(\Rightarrow b=\frac{4}{5};c=1;a=\frac{3}{4}\)

b, \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)

\(\Rightarrow\left(a+b+c\right).\left(a+b+c\right)=36\)

\(\Rightarrow\left(a+b+c\right)^2=36\)

\(\hept{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)

Nếu a + b + c = 6 \(\Rightarrow\)a = - 2 b = 3 c=5

Nếu a + b + c = - 6 \(\Rightarrow\)a = 2 , b = -3 c = -5

c,ab=c => a=c/b (1) 

bc=4a => a=(bc)/4 (2) 

Từ (1) và (2) => c/b = (bc)/4 

<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2 

(*) Với b=2 thì 

(1) => a=c/2 <=> c=2a:

ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3 

_ Với a=3 thì c= 2*3 = 6 (thỏa) 

_Với a=-3 thì c= 2*-3 =-6 (thỏa) 

(*) Với b=-2 thì 

(1) => a=c/-2 <=> c=-2a 

Ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3 

_ Với a=3 thì c= -2*3 = -6 (thỏa) 

_Với a=-3 thì c= -2*-3 =6 (thỏa) 

Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) } 

21 tháng 12 2017

Tớ ko bt

9 tháng 12 2018

\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc=ab^2+abc=abc+b^2c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(a+c\right).bc=\left(b+c\right).ac\Rightarrow abc=c^2a=abc+c^2b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=c\\a=b\end{cases}\Rightarrow a=b=c\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1}\)

9 tháng 12 2018

\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc\Rightarrow abb+abc=abc+bbc\Rightarrow a=c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(c+a\right).bc=\left(b+c\right).ca\Rightarrow bcc+abc=abc+cca\Rightarrow a=b\end{cases}\Rightarrow a=b=c}\)

\(M=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

p/s: bài này có nhiều cách lắm, cách này ko đc thì thử làm cách khác =))

9 tháng 12 2018

\(\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab\left(b+c\right)=\left(a+b\right)bc\)

\(\Rightarrow ab^2+abc=abc+b^2c\Rightarrow ab^2=b^2c\Rightarrow a=c\) (1)

\(\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow bc\left(c+a\right)=\left(b+c\right)ca\)

\(\Rightarrow bc^2+bca=bca+c^2a\Rightarrow bc^2=c^2a\Rightarrow b=a\)(2)

Từ (1) và (2) được a = b = c

Khi đó:

\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

8 tháng 12 2015

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\frac{abc}{\left(a+b\right).c}=\frac{abc}{a.\left(b+c\right)}=\frac{cab}{\left(c+a\right).b}\)

\(\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ab}\)

=> ac+bc=ab+ac=bc+ab

+) ac+bc=ab+ac=> bc=ab => c=a ( do b  khác 0 ) 

+) ab+ac=bc+ab=> ac=bc => a=b ( do c khác 0 )

=> a=b=c

Khi đó: \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)