K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

theo đầu bài ta có 2 TH:

TH1) a+b+c\(\ne\)0

ta có:

\(\dfrac{a+b-5c}{c}=\dfrac{b+c-5a}{a}=\dfrac{c+a-5b}{b}=\dfrac{a+b-5c+b+c-5a+c+a-5b}{c+a+b}\)

=\(\dfrac{-3a-3b-3c}{a+b+c}=\dfrac{-3\left(a+b+c\right)}{a+b+c}=-3\left(vìa+b+c\ne0\right)\)

Do đó:

\(\dfrac{a+b-5c}{c}=-3\)

=> a+b-5c=-3c

=> a+b=2c

Tương tự ta tính được : b+c=2a; a+c=2b (bạn làm chi tiết hơn)

M=\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=\dfrac{a+b}{a}.\dfrac{b+c}{b}.\dfrac{a+c}{c}=\dfrac{2c}{a}.\dfrac{2a}{b}.\dfrac{2b}{a}=8\)

TH2) a+b+c=0

=>\(\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

=>\(M=-\dfrac{c}{a}.\dfrac{-a}{b}.\dfrac{-b}{c}=-1\)

Vậy M=-1 hoặc M=8

25 tháng 3 2018

Gợi ý : 
Bước 1 : Cộng 6 vào các hạng tử đã cho ở đề bài 

Bước 2 : xét 2 TH : 
TH1 : a + b + c = 0 

TH2 : a + b + c khác 0 

Chúc học tốt !!!! 

21 tháng 10 2018

\(\frac{5a+5b-c}{c}=\frac{5b+5c-a}{a}=\frac{5c+5a-b}{b}\)

\(\Leftrightarrow\)\(\frac{5a+5b-c}{c}+1=\frac{5b+5c-a}{a}+1=\frac{5c+5a-b}{b}+1\)

\(\Leftrightarrow\)\(\frac{5a+5b}{c}=\frac{5b+5c}{a}=\frac{5c+5a}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{5a+5b}{c}=\frac{5b+5c}{a}=\frac{5c+5a}{b}=\frac{5a+5b+5b+5c+5c+5a}{a+b+c}=\frac{10\left(a+b+c\right)}{a+b+c}=10\)

Do đó : 

\(\frac{5a+5b}{c}=10\)\(\Leftrightarrow\)\(5a+5b=10c\)\(\Leftrightarrow\)\(a+b=2c\) \(\left(1\right)\)

\(\frac{5b+5c}{a}=10\)\(\Leftrightarrow\)\(5b+5c=10a\)\(\Leftrightarrow\)\(b+c=2a\) \(\left(2\right)\)

\(\frac{5c+5a}{b}=10\)\(\Leftrightarrow\)\(5c+5a=10b\)\(\Leftrightarrow\)\(c+a=2b\) \(\left(3\right)\)

Thay (1), (2) và (3) vào \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{16120abc}\) ta được : 

\(P=\frac{2c.2a.2b}{16120abc}=\frac{8abc}{16120abc}=\frac{1}{2015}\)

Vậy \(P=\frac{1}{2015}\)

Chúc bạn học tốt ~ 

3 tháng 4 2018

Giup mk vs

12 tháng 2 2019

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)

+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)

Nếu \(a+b+ c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow a+b=2c\)

      \(b+ c=2a\)

       \(c+a=2b\)

\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)

12 tháng 2 2019

chumia sư phụ cứu zới !!!

7 tháng 12 2016

+ Nếu a+b+c=0 thì a+b=-c; b+c=-a; c+a=-b

P = -c.(-a).(-b)/16120abc = -1/16120

+ Nếu a+b+c khác 0

Áp dung t/c của dãy tỉ số = nhau ta có:

5a+5b-c/c = 5b+5c-a/a = 5c+5a-b/b

= (5a+5b-c)+(5b+5c-a)+(5c+5a-b)/c+a+b

= 9(a+b+c)/a+b+c = 9

=> 5a+5b-c=9c; 5b+5c-a=9a; 5c+5a-b=9b

=> 5a+5b=10c; 5b+5c=10a; 5c+5a=10b

=> a+b=2c; b+c=2a; c+a=2b

P = 2c.2a.2b/16120abc = 1/2015

17 tháng 10 2018

bài này phải xét cả truờng hợp a+b+c=0 vầ+b+ckhác 0 chứ

27 tháng 7 2021

bạn gửi lại hình ảnh giúp mk đc ko