K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2a}=\dfrac{a+b+c}{2(a+b+c)}=\dfrac{1}{2} \\->a=\dfrac{1}{2}.2b=b \\b=\dfrac{1}{2}.2c=c \\c=\dfrac{1}{2}.2a=a \\->a=b=c (đpcm)\)

1 tháng 1 2020

thiếu đề à ?cho thế là xong à?

30 tháng 7 2017

chuyển VP sang VT là đc mà

2 tháng 8 2017

chuyển đi

1 tháng 9 2019

xin lỗi các bạn . Mình nhầm đề . Các bạn ko cần trả lời câu hỏi này đâu 

1 tháng 9 2019

Mình xin lỗi . Đây đúng là đề bài thật . Các bạn làm giúp mình với nha !! Thành thật xin lỗi

Ta có: \(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)

\(\Rightarrow\frac{2a+b+c}{a}-1=\frac{a+2b+c}{b}-1=\frac{a+b+2c}{c}-1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

Mà \(a,b,c\ne0\)

=> a = b= c

\(A=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

      \(=\frac{c+c}{c}+\frac{a+a}{a}+\frac{b+b}{b}\)

        \(=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}\)

          \(=2+2+2=6\)

???❤😘😍😍
5 tháng 1 2020

Ta có : \(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)(sửa lại đề) (1) 

=> \(\frac{2y+2z-x}{a}=\frac{4b+4x-2y}{2b}=\frac{4x+4y-2z}{2c}\)

\(\frac{4z+4x-2y+4x+4y-2z-2y-2z+x}{2b+2c-a}=\frac{9x}{2b+2c-a}\)(dãy tỉ số bằng nhau) (2)

Từ (1) => \(\frac{4y+4z-2x}{2a}=\frac{2z+2x-y}{b}=\frac{4x+4y-2z}{2c}\)

\(\frac{4x+4y-2z+4y+4z-2x-2z-2x+y}{2c+2a-b}=\frac{9y}{2c+2a-b}\)(dãy tỉ số bằng nhau) (3)

Từ (1) có :  \(\frac{4y+4z-2x}{2a}=\frac{4z+4x-2y}{2b}=\frac{2x+2y-z}{c}=\frac{4y+4z-2x+4z+4x-2y-2x-2y+z}{2a+2b-c}\)\(=\frac{9z}{2a+2b-c}\)(dãy tỉ số bằng nhau) (4)

Từ (2) ; (3) ; (4) => điều phải chứng minh

25 tháng 10 2021

+) x + b + c ≠ 0

Ta có :

\(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}\)

\(\Rightarrow\frac{a-b+c}{2b}+1=\frac{c-a+b}{2a}+1=\frac{a-c+b}{2c}+1\)

\(\Rightarrow\frac{a+b+c}{2b}=\frac{a+b+c}{2a}=\frac{a+b+c}{2c}\)=> 2a = 2b = 2c ( do a + b + c ≠ 0 )

 \(\Rightarrow a=b=c\Rightarrow P=\left(1+\frac{c}{c}\right).\left(1+\frac{b}{b}\right).\left(1+\frac{a}{a}\right)=2.2.2=8\)

+) a + b + c = 0

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}=\frac{a-b+c+c-a+b+a-c+b}{2b+2a+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{0}{0}\left(\text{vô lý}\right)\)

Vậy P chỉ nhận 1 giá trị là P = 8

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

11 tháng 12 2019

Còn câu hỏi đâu bạn? Nguyễn Ngân Hà