Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=ax^{2\: }+bx+c\)
\(\Rightarrow f\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)
Ta có: \(\hept{\begin{cases}a+3c=2019\\a+2b=2020\end{cases}}\)
\(\Rightarrow a+3c+a+2b=2019+2020\)
\(\Leftrightarrow2a+2b+3c=4039\)
\(\Leftrightarrow2\left(a+b+c\right)+c=4039\)
Vì a,b,c không âm => 2(a+b+c)\(\le2\left(a+b+c\right)+c=4039\)
\(\Leftrightarrow2\left(a+b+c\right)=4039\)
\(\Leftrightarrow a+b+c=\frac{4039}{2}\)
\(\Leftrightarrow a+b+c=2019\frac{1}{2}\)
\(\Rightarrow f\left(1\right)\le2019\frac{1}{2}\left(đpcm\right)\)
\(a+b+c = 1 ; 1/a + 1/b + 1/c = 1 \)
\(=> (a+b+c)(1/a +1/b+1/c) = 1\)
\(<=> a/b + b/a + a/c + c/a + b/c + c/b + 3 - 1 = 0\)
\(<=> (a^2+b^2)/ab + (a^2+c^2)/ac + (b^2+c^2)/bc + 2 =0\)
\(<=> (a^2 + b^2).c + (a^2+c^2).b + (b^2+c^2).a + 2abc = 0\)
\(<=> a^2c + b^2c + a^2b + c^2b + ab^2 + ac^2 + 2abc =0 \)
\(<=> a^2c + ac^2 + abc + a^2b+ ab^2 + abc + b^2c + bc^2 =0\)
\(<=> ac(a+b+c) + ab(a+b+c) + bc(b+c) =0 \)
\(<=> a(b+c)(a+b+c) + bc(b+c) =0 \)
\(<=> (b+c)(a^2 + ab + ac + bc ) = 0 \)
\(<=> (b+c)[a(a+b) + c(a+b)] =0\)
\(<=> (b+c)(a+b)(a+c) =0 \)
<=> 1 trong 3 số \(b+c;a+b ; a+c = 0\)
\(a+b=0 => a= -b => a + b + c = 1 <=> c = 1 ; a = b = 0\)
Thay vào S ta được : \(\Rightarrow S=0^{2019}+0^{2019}+1^{2019}=1\)