Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
36 = 62 => là số chính phương
256=162 => là số chính phương
91 => ko phải số chính phương
36 = 62 => 36 là số chính phương
256 = 162 => 256 là số chính phương
91 ko bằng số chính phương
a) \(\frac{91}{1.4}+\frac{91}{4.7}+...+\frac{91}{88.91}=\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{88.91}\right)\)
\(=\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{88}-\frac{1}{91}\right)=\frac{91}{3}\left(1-\frac{1}{91}\right)=\frac{91}{3}.\frac{90}{91}=30\left(\text{đpcm}\right)\)
1/số đó là 2304.<Lý luận tự nghĩ>
2/A=abc+cba+bca=(a+b+c).111=(<a+b+c>.3).37
vì a,b.c<9 nên a++b+c<27 suy ra 3.(a+b+c)<81
vì 37 là số nguyên tố nên bắt buộc 3.(a+b+c)=37(để A là SCP)
vậy a+b+c ko là số tự nhiên(vô lý)
Vậy A ko là số chính phương
(mình giải hơi tắt)
tick cho mình nha !
Tham khao:
Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 (*)
Ta chứng minh p+1 là số chính phương:
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N)
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ.
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương
Ta chứng minh p-1 là số chính phương:
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2.
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương .
Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương (đpcm)
Làm j mak dài vậy mem.Tôi có cách khác:))
Nhận xét:Một số chính phương khi chia cho 4 thì có các số dư là 0 hoặc 1.
Từ giả thiết suy ra M chia hết cho 2 và 3 nhưng không chia hết cho 4
Như vậy vì M chia hết cho 3 nên M-1 chia 3 dư 2 suy ra M-1 không là số chính phương.
36 và 256 là số chính phương còn 91 không phải
91 ko phải còn 36; 256 thì phải nha bạn