Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo tính chất hai tiếp tuyến cắt nhau ta có IA = IB = IC.
Do đó tam giác ABC vuông tại A.
Lại có \(IO_1\perp AB;IO_2\perp AC\) nên tam giác \(IO_1O_2\) vuông tại I.
b) Đầu tiên ta chứng minh kết quả sau: Cho hai đường tròn (D; R), (E; r) tiếp xúc với nhau tại A. Tiếp tuyến chung BC (B thuộc (D), C thuộc (E)). Khi đó \(BC=2\sqrt{Rr}\).
Thật vậy, kẻ EH vuông góc với BD tại H. Ta có \(DH=\left|R-r\right|;DE=R+r\) nên \(BC=EH=\sqrt{DE^2-DH^2}=2\sqrt{Rr}\).
Trở lại bài toán: Giả sử (O; R) tiếp xúc với BC tại M.
Theo kết quả trên ta có \(BM=2\sqrt{R_1R};CM=2\sqrt{RR_2};BC=2\sqrt{R_1R_2}\).
Do \(BM+CM=BC\Rightarrow\sqrt{R_1R}+\sqrt{R_2R}=\sqrt{R_1R_2}\Rightarrow\dfrac{1}{\sqrt{R}}=\dfrac{1}{\sqrt{R_1}}+\dfrac{1}{\sqrt{R_2}}\).
P/s: Hình như bạn nhầm đề
GỌI TÂM CÁC HÌNH TRÒN LẦN LƯỢT LÀ M , N , P
KHI ĐÓ TA CÓ TAM GIÁC MNP LÀ TAM GIÁC ĐỀU VÀ A , B , C LÀ TRUNG ĐIỂM CỦA MỖI CẠNH CỦA TAM GIÁC VÀ MỖI CẠNH CÓ ĐỘ DÀI BẰNG ĐƯỜNG HÌNH TRÒN
TA CÓ S ANC = S AMB = S BCP = 1/4 S ( N ) = \(\frac{1}{4}.18\pi=\frac{9}{2}\pi\)
TA CÓ TAM GIÁC MNP LÀ TAM GIÁC ĐỀU CÓ CẠNH = \(6\sqrt[]{2}\)
=> S MNP = \(\frac{\sqrt{3}}{4}.72=18\sqrt{3}\)
=> S ABC = \(18\sqrt{3}-\frac{27}{2}\pi\)