Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi I là trung điểm của AB, ta có: OI = OA – IA
b, Ta chứng minh được IC//BD//OE
Mà OB = BI = IA => AC = CD = DE
b: Xét ΔBHA có
BD vừa là đường cao, vừa là phân giác
=>ΔBHA cân tại B
=>D là trung điểm của AH
góc EAD=1/2*sđ cung AD
góc FAD=góc FBC=1/2*sđ cung DC
mà sđ cung AD=sđ cung DC
nên góc EAD=góc FAD
=>AD là phân giác của góc EAF
=>D là trung điểm của EF
Xét tứ giác AEHF có
D là trung điểm chung của AH và EF
AH vuông góc EF
=>AEHF là hình thoi
a: góc ADB=1/2*180=90 độ
=>BD vuông góc AH
góc ACB=1/2*180=90 độ
=>AC vuông góc HB
góc HDF+góc HCF=180 độ
=>HDFC nội tiếp
a: Đường thẳng tiếp xúc với đường tròn tại C cắt AD tại E
=>EC là tiếp tuyến tại C của đường tròn
=>EC\(\perp\)OC tại C
Xét tứ giác EAOC có
\(\widehat{EAO}+\widehat{ECO}=90^0+90^0=180^0\)
nên EAOC là tứ giác nội tiếp
=>E,A,O,C cùng thuộc một đường tròn
b: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)DB tại C
Xét ΔDAB vuông tại A có AC là đường cao
nên \(BC\cdot BD=BA^2=\left(2R\right)^2=4R^2\)
Xét (O) có
EA,EC là tiếp tuyến
Do đó: EA=EC
=>E nằm trên đường trung trực của AC(1)
OA=OC
=>O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OE là đường trung trực của AC
=>OE\(\perp\)AC
Ta có: OE\(\perp\)AC
AC\(\perp\)BD
Do đó: OE//BD
c: ΔOBC cân tại O
mà OF là đường cao
nên OF là phân giác của góc BOC
OC\(\perp\)CE tại C
mà C\(\in\)EF
nên OC\(\perp\)CF tại C
Xét ΔOCF và ΔOBF có
OC=OB
\(\widehat{COF}=\widehat{BOF}\)
OF chung
Do đó: ΔOCF=ΔOBF
=>\(\widehat{OCF}=\widehat{OBF}=90^0\)
=>BF là tiếp tuyến của (O;R)
a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC
=> OA=OB=OC và O là trung điểm của BC
=> Tam giác ABC vuông tại A
=> góc BAC = 90 độ
b) DO tam giác HAK nội tiếp đường tròn (I)
Lại có góc HAK = 90 độ
=> HK là đường kính của (I)
=> HK đi qua I
=> H,I,K thẳng hàng
c) Đề bài ghi ko rõ
d) 3 điểm nào?