K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

C C C I E F A B 1 2 3 x M N D G y

a) Gọi Ax là tia tiếp tuyến chung của (C1) và (C2), AF cắt (C2) tại G khác A.

Ta có: ^GAx = ^GMA, ^FAx = ^FEA => ^GMA = ^FEA => GM // EF. Mà EF là tiếp tuyến tại I của (C2)

Nên C2I vuông góc GM. Do GM là dây cung của (C2) nên I là điểm chính giữa cung nhỏ GM

=> AI là phân giác của ^GAM hay AI là phân giác của ^FAE => \(\frac{AF}{AE}=\frac{IF}{IE}\) 

Tương tự: \(\frac{BF}{BE}=\frac{IF}{IE}\). Từ đó: \(\frac{AF}{AE}=\frac{BF}{BE}\Rightarrow AF.BE=AE.BF\)

Áp dụng ĐL Ptolemy vào tứ giác AEBF nội tiếp có: \(AF.BE+AE.BF=AB.EF\)

Hay \(2AE.BF=2AB.ED\). Suy ra: \(\frac{AE}{AB}=\frac{ED}{BF}\) kết hợp với ^AED = ^ABF (Cùng chắn cung AF)

=> \(\Delta\)ADE ~  \(\Delta\)AFB (c.g.c) => ^DAE = ^FAB. Mà ^IAE = ^IAF (cmt) => ^IAD = ^IAB

=> AI là phân giác ^BAD (1)

Cũng từ \(\Delta\)ADE ~ \(\Delta\)AFB =>\(\frac{AD}{AE}=\frac{AF}{AB}\); ^FAD = ^BAE => \(\Delta\)ADF ~ \(\Delta\)AEB (c.g.c)

=> ^ADF = ^AEB hay ^ADI = ^AEB. Tương tự: ^BDI = ^AEB => ^ADI = ^BDI => DI là phân giác ^ADB (2)

Từ (1);(2) suy ra: Điểm I là tâm nội tiếp \(\Delta\)ABD (đpcm).

b) Gọi My là tia đối của MN ta có ^AMy = ^EMN (3)

Ta thấy: IE là tiếp tuyến chung của (C2);(C3) => EM.EA = EN.EB (=EI2) => Tứ giác AMNB nội tiếp

=> ^EMN = ^EBA = ^EFA = ^MGA (Do GM // EF) (4)

Từ (3);(4) suy ra: ^MGA = ^AMy = 1/2.Sđ(AM => My là tia tiếp tuyến của (C2) hay MN là tiếp tuyến của (C2)

Hoàn toàn tương tự: MN cũng là tiếp tuyến của (C3). Từ đó: MN là tiếp tuyến chung của (C2) và (C3) (đpcm).

14 tháng 12 2023

Bạn ghi đầy đủ đề đi bạn

24 tháng 8 2021

undefined

 

Có \(\Delta ECB\) vuông tại E và có EM là đường trung tuyến

\(\Rightarrow EM=\dfrac{1}{2}BC=BM\) 

\(\Rightarrow\Delta EBM\) cân tại M

\(\Rightarrow\widehat{BEM}=\widehat{MBE}\)

mà \(\widehat{MBE}=\widehat{CAD}\) (vì cùng phụ góc BCA)

\(\Rightarrow\widehat{BEM}=\widehat{CAD}\) 

\(\Rightarrow\)EM là tiếp tuyến của (C1)

CM tương tự đc EM là tiếp tuyến của (C2)

Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.a) Vì sao AD là đường kính của đường tròn(O)b) Tính góc ∠ACDc) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:a) Chu vi tam giác...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)

b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)

Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:

a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R

Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.

a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).

b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.

1
2 tháng 9 2020

Bài 1 :                                                      Bài giải

Hình tự vẽ //                                       

a) Ta có DOC = cung DC

Vì DOC là góc ở tâm và DAC là góc chắn cung DC

=>DOC = 2 . AOC (1)

mà tam giác AOC cân =>AOC=180-2/AOC (2)

Từ (1) ; (2) ta được DOC + AOC = 180

b) Góc ACD là góc nội tiếp chắn nữa đường tròn

=>ACD=90 độ

c) c) HC=1/2*BC=12

=>AH=căn(20^2-12^2)=16

Ta có Sin(BAO)=12/20=>BAO=36.86989765

=>AOB=180-36.86989765*2=106.2602047

Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)

<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2

=>OA=12.5

22 tháng 1 2017

a, Chứng minh tứ giác AEIF là hình chữ nhật và K là trung điểm AI

b, Có IE.IO =  I B 2 = B C 2 4 và IF.IO' =  I C 2 = B C 2 4

=> 2.(IE.IO+IF.IO') =  A B 2 + A C 2

c, PK Là đường trung bình của ∆OAI và là trung trực của EA

Ta có ∆PEK = ∆PAK nên  P E K ^ = P A K ^

Vậy  P E K ^ = 90 0 => đpcm

d, ∆ABC:∆IOO’ =>  S A B C S I O O ' = B C O O ' 2 =>  S A B C = S I O O ' . B C 2 O O ' 2

mà BC = 2AI'; OO' = 2a; S O I O ' = 1 2 . 2 a . I A = a . I A => S A B C = I A 2 a

I A 2 = R R ' ⩽ R + R ' 2 2 = a 2 => IA lớn nhất bằng a khi R=R’