K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

(d3) đi qua A(1;2) nên (m+1).1 +(m-1).2 = m+1

                              <=> 3m-1 = m+1

                              <=> m = 1

lập hpt tọa độ giao điểm (d1) và (d2) : x+y=-5 và x-y=1

                                                     <=> x=-2 và y=-3

3 đt đồng quy khi (d3) đi qua (-2;-3) <=> bạn thay vào tự tính nhé

1 tháng 12 2017

a, pt hoanh độ giao điểm cua 2 đg thẳng d1 và d2 la: 2x - 5 = 1 <=> x = 3

vậy tọa độ giao điểm cua d1 va d2 la A(3;1)

Để d1 , d2, d3 đồng quy thì d3 phải đi qua diem A(3;1)

Ta co pt: (2m - 3).3 - 1 = 1

<=> 6m - 9 -1 = 1

<=> 6m = 11 <=> m = 11/6

mấy bài còn lại tương tự nha

5 tháng 12 2018

bạn ơi , lên hh nha 

5 tháng 12 2018

a, Gọi giao điểm (d1) và (d2) là M(xM ; yM)

Hoành độ điểm M là nghiệm của pt

2x + 1 = 3x - 1

<=> 2x - 3x = -1 - 1

<=> -x = -2

<=> x = 2

Thay x = 2 vào (d1) thì y = 2.2 + 1 = 5

=> M(2;5)

*Xét (d3)

Với x = 2 thì y = 2 + 3 = 5

=> M(2;5) thuộc (d3)

Vậy (d1) ; (d2) và (d3) đồng quy tại M(2;5)

b, Vì M(2;5) thuộc hàm y = (m-1)x + m

Nên 5 = (m-1) .2 +m

<=> 5 = 2m - 2 +m 

<=> 7 = 3m

<=> \(m=\frac{7}{3}\)

Vậy ...................

10 tháng 8 2021

a, để (d2)//(d3)

\(< =>\left\{{}\begin{matrix}m^2+1=2\\m\ne1\end{matrix}\right.\)\(< =>m=-1\)

b, pt hoành độ giao điểm (d1)(d2)

\(x+2=2x+1< =>x=1=>y=3\)

\(pt\) hoành độ (d2)(d3)

\(2x+1=\left(m^2+1\right)x+m< =>2+1=\left(m^2+1\right)2+m\)

\(=>m=0,5\)

19 tháng 11 2021

a. PTTDGD của (d1) và (d2):

\(-2x=x-3\)

\(\Rightarrow x=1\)

Thay x = 1 vào (d1): \(y=-2\cdot1=-2\)

Vậy (d1) cắt (d2) tại điểm A(1;-2)

AH
Akai Haruma
Giáo viên
20 tháng 11 2021

Lời giải:

a. PT hoành độ giao điểm: $-2x=x-3$

$\Leftrightarrow x=1$

$y=-2x=1(-2)=-2$

Vậy giao điểm của $(d_1), (d_2)$ là $(1,-2)$

b.

Để $(d_1), (d_2), (d_3)$ đồng quy thì $(d_3)$ cũng đi qua giao điểm của $(d_1), (d_2)$

Tức là $(1,-2)\in (d_3)$

$\Leftrightarrow -2=m.1+4\Leftrightarrow m=-6$

22 tháng 12 2022

a,Giao của d1 và d2 là điểm có hoành độ thỏa mãn pt :

x -1  = - x + 3 

x  - 1 + x - 3 = 0

2x - 4 = 0

2x = 4

x = 2

thay x = 2 vào pt  y = x - 1 => y = 2 - 1 = 1

Giao của d1 và d2 là A ( 2; 1)

b, để d1; d2; d3 đồng quy thì d3 phải đi qua giao điểm của d1 và d2 là điểm A ( 2; 1)

Thay tọa độ điểm A vào pt d3 ta có :

2.(m-2) .2 + (m-1) = 1

4m - 8 + m - 1 = 1

5m - 9 = 1

5m = 10

m = 2

vậy với m = 2 pt d3 là y = 2 -1 = 1 thì d1; d2 ; d3 đồng quy tại 1 điểm 

c, vẽ đồ thị hàm số câu này dễ bạn tự làm nhé

Giao d1 với Ox là điểm có tung độ  y = 0 => x -1 = 0 => x = 1

Vậy giao d1 với Ox là điểm B( 1;0)

độ dài OB là 1 

Giao d1 với trục Oy điểm có hoành độ x = 0 => y = 0 - 1 = -1

Vậy giao d1 với Oy là điểm C ( 0; -1)

Độ dài OC = |-1| = 1

vẽ đồ thị bạn tự vẽ nhé 

d, Xét tam giác  vuông OBC có 

OB = OC = 1 ( cmt)

=> tam giác OBC vuông cân tại O

=> góc OBC = ( 1800 - 900): 2 = 450

Kết luận d1 tạo với trục Ox một góc bằng 450

 

 

23 tháng 8 2021

\(\left(d_1\right):y=-x+1\)

\(\left(d_2\right):y=x-1\)

\(\left(d_3\right):y=\dfrac{k+1}{1-k}x+\dfrac{k+1}{k-1}\)

a) Để (d1) và (d3) vuông góc với nhau:

\(\Leftrightarrow\left(-1\right)\left(\dfrac{k+1}{1-k}\right)=-1\)\(\Leftrightarrow k=0\)(thỏa)

Vậy k=0

b)Giao điểm của (d1) và (d2) là nghiệm của hệ \(\left\{{}\begin{matrix}y=-x+1\\y=x-1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)

Để (d1);(d2);(d3) đồng quy\(\Leftrightarrow\) (d3) đi qua điểm (1;0)

\(\Rightarrow0=\dfrac{k+1}{1-k}.1+\dfrac{k+1}{k-1}\)\(\Leftrightarrow0=0\)(lđ)

Vậy với mọi k thì (d1);d2);(d3) luôn cắt nhau tại một điểm

c)Gỉa sử \(M\left(x_0;y_0\right)\) là điểm cố định mà (d3) luôn đi qua

Khi đó \(\left(k+1\right)x_0+\left(k-1\right)y_0=k+1\) luôn đúng với mọi k

\(\Leftrightarrow k\left(x_0+y_0-1\right)+x_0-y_0-1=0\) luôn đúng với mọi k

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0-1=0\\x_0-y_0-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=1\end{matrix}\right.\)

Vậy \(M\left(2;1\right)\) là điểm cố định mà (d3) luôn đi qua.

19 tháng 11 2023

a) Thay hoành độ và tung độ của A vào 2 pt đường thẳng (d1) và (d2), ta lần lượt được:

 \(1=3\left(-1\right)+4\) (luôn đúng)

 \(-1-2.1=0\) (vô lí)

Như vậy, \(A\in d_1;A\notin d_2\)

b) Gọi giao điểm của d1, d2 là \(B\left(x_0;y_0\right)\). Khi đó \(x_0,y_0\) là các số thỏa mãn \(\left\{{}\begin{matrix}y_0=3x_0+4\\x_0-2y_0=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y_0=6y_0+4\\x_0=2y_0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y_0=-\dfrac{4}{5}\\x_0=-\dfrac{8}{5}\end{matrix}\right.\)

Vậy giao điểm của d1 và d2 là \(B\left(-\dfrac{8}{5};-\dfrac{4}{5}\right)\)

c) Để đường thẳng d1, d2, d3 đồng quy thì d3 phải đi qua giao điểm của d1 và d2. Nói cách khác, d3 phải đi qua điểm \(B\left(-\dfrac{8}{5};-\dfrac{4}{5}\right)\)

\(\Leftrightarrow\left(m-1\right).\dfrac{-8}{5}+\left(m-2\right).\dfrac{-4}{5}+m+1=0\)

\(\Leftrightarrow\dfrac{21}{5}-\dfrac{7}{5}m=0\)

\(\Leftrightarrow m=3\)

Vậy \(m=3\) thỏa mãn ycbt.

Cho ba đường thẳng d1: y = 2x + 8; d2: y = mx – 2m + 3; d3: y = x + 2.1. Tìm m để d2 đi qua điểm E(1 ; 3).2. Tìm m để d2 vuông góc với đường phân giác góc phần tư thứ hai.3. Tìm m để ba đường thẳng trên đồng quy.4. Tìm điểm cố định mà d2 luôn đi qua với mọi m. Từ đó tìm m để khoảng cách từ gốc O đến d2 là lớnnhất.5. Gọi d3 cắt 0x, 0y lần lượt tại A và B. Tìm A và B sau đó tính diện tích tam giác OAB theo hệ...
Đọc tiếp

Cho ba đường thẳng d1: y = 2x + 8; d2: y = mx – 2m + 3; d3: y = x + 2.
1. Tìm m để d2 đi qua điểm E(1 ; 3).
2. Tìm m để d2 vuông góc với đường phân giác góc phần tư thứ hai.
3. Tìm m để ba đường thẳng trên đồng quy.
4. Tìm điểm cố định mà d2 luôn đi qua với mọi m. Từ đó tìm m để khoảng cách từ gốc O đến d2 là lớn
nhất.
5. Gọi d3 cắt 0x, 0y lần lượt tại A và B. Tìm A và B sau đó tính diện tích tam giác OAB theo hệ thức
lượng.
6. Lập phương trình đường thẳng d đi qua điểm M(3 ; 8) và song song với d3, cắt hai trục tọa độ tại C và
D. Tính độ dài đường cao của tam giác COD, từ đó suy ra khoảng cách từ điểm M đến d3.
7. Lập phương trình đường thẳng d’ qua M và vuông góc với d3. Tìm hình chiếu N của M trên d3, từ đó
tính khoảng cách từ M đến d3

1

1:Thay x=1 và y=3 vào (d2), ta được:

\(m-2m+3=3\)

hay m=0