Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(\Delta ABH\) vuông tại H có:
BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)
=> BH=5 cm
BC=BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có:
AH2 + HC2 =AC2 ( đl Pytago)
=> AC2 =122 + 162 =20 cm
b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL Pytago)
=> BH2 =AB2 - AH2 =132 - 122 =25
=> BH=5 cm
BC= BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)
=> AC2 = 122 + 162 =400
=> AC= 20 cm

a) EA = EH
Xét ΔABE và ΔHBE vuông tại A và H:
- Góc ABE chung
- Góc BAE = góc EBC (BE là phân giác)
⇒ ΔABE ∽ ΔHBE
⇒ EA = EH
b) EK = EC
Xét ΔAEC và ΔHEK vuông tại A và H:
- Góc tại E chung
- EA = EH (câu a)
⇒ ΔAEC ∽ ΔHEK
⇒ EK = EC
c) BE ⊥ KC
Vì EK = EC ⇒ ΔECK cân tại E
⇒ BE vừa là phân giác vừa là đường cao
⇒ BE ⊥ KC

nếu \(a\perp b\) và b//c thì ta có : \(a\perp c\)
vậy chọn đáp án B
a: ΔHBA vuông tại B
=>HB<HA
Vì AB<BC
nên HA<HC
=>HB<HA<HC
b: HA<HC
=>góc HCA<góc HAC
c: HA<HC
=>góc HCA<góc HAC
=>góc AHB>góc BHC
có thể giải chi tiết cho mik đc ko ạ
vẽ cả hình nữa