Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BN}\) \(\Rightarrow\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2\left|\overrightarrow{BN}\right|=2BN\)
\(=2\left(AB^2-NA^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)
b) \(\overrightarrow{NB}\)
c) ta có : \(\overrightarrow{NA}+\overrightarrow{MB}+\overrightarrow{PC}=\overrightarrow{NA}+\overrightarrow{AM}+\overrightarrow{PC}=\overrightarrow{NM}+\overrightarrow{PC}\)
\(=\overrightarrow{NM}+\overrightarrow{MN}=\overrightarrow{0}\left(đpcm\right)\)
d) ta có : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MN}+\overrightarrow{MP}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{MC}\)
\(\overrightarrow{MC}+\overrightarrow{MC}=2\overrightarrow{MC}\)
\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MN}+\overrightarrow{MP}+\overrightarrow{MC}\right|=2\left|\overrightarrow{MC}\right|=2MC\)
\(=2\left(AC^2-AM^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)
1: (d): y=kx+b
Thay x=0 và y=-1 vào (d), ta được:
\(b+k\cdot0=-1\)
=>b=-1
=>(d): y=kx-1
Phương trình hoành độ giao điểm là:
\(-x^2-kx+1=0\)
=>\(x^2+kx-1=0\)
Để trung điểm của AB nằm trên trục tung thì \(x_A+x_B=0\)
=>k=0
2: \(x_1-x_2=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{k^2+4}\)
\(\left|x_1^3-x_2^3\right|=\left|\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)\right|\)
\(=\left|\sqrt{\left(k^2+4\right)^3}-3k\sqrt{k^2+4}\right|\)
\(=\left|\sqrt{k^2+4}\left(k^2+4-3k\right)\right|>=2\)
\(MA^2+MB^2=\overrightarrow{MA}.\overrightarrow{MA}+\overrightarrow{MB}.\overrightarrow{MB}=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)\left(\overrightarrow{MI}+\overrightarrow{IA}\right)+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\)
\(=\overrightarrow{MI}.\overrightarrow{MI}+2\overrightarrow{MI.}\overrightarrow{IA}+\overrightarrow{IA}.\overrightarrow{IA}+\overrightarrow{MI}.\overrightarrow{MI}+2\overrightarrow{MI.}\overrightarrow{IB}+\overrightarrow{IB}.\overrightarrow{IB}\)
\(=2MI^2+IA^2+IB^2+2\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}\right)\)
\(=2MI^2+IA^2+IB^2\)
\(=2MI^2+\left(\frac{a}{2}\right)^2+\left(\frac{a}{2}\right)^2=a^2\)
\(\Leftrightarrow MI^2=\frac{a^2}{4}\)
Suy ra \(M\)thuộc đường tròn tâm \(I\)bán kính \(\frac{a}{2}\).
Trên đoạn AM, lấy điểm C sao cho AC = MB = 20
\(\Rightarrow\overrightarrow{AC}=\overrightarrow{MB}\)
Ta có: \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+\overrightarrow{AC}\right|=\left|\overrightarrow{MC}\right|=MC=10\)
\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA=50\)
a: \(\overrightarrow{EF}=\overrightarrow{EO}+\overrightarrow{OF}\)
\(=-\overrightarrow{OE}+\overrightarrow{OF}\)
\(=-\dfrac{1}{2}\left(\overrightarrow{OA}+\overrightarrow{OB}\right)+\dfrac{1}{2}\left(\overrightarrow{OC}+\overrightarrow{OD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{OC}-\overrightarrow{OA}+\overrightarrow{OD}-\overrightarrow{OB}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{BD}\right)\)
b: \(VT=\left(\overrightarrow{OA}+\overrightarrow{OB}\right)+\left(\overrightarrow{OC}+\overrightarrow{OD}\right)\)
\(=2\cdot\overrightarrow{OE}+2\cdot\overrightarrow{OF}=\overrightarrow{0}\)
\(4MO^2=AB^2\Leftrightarrow\left(2\overrightarrow{MO}\right)^2=\left(\overrightarrow{AM}+\overrightarrow{MB}\right)^2\)
\(\Leftrightarrow\left(\overrightarrow{MA}+\overrightarrow{MB}\right)^2=\left(\overrightarrow{AM}+\overrightarrow{MB}\right)^2\)
\(\Leftrightarrow MA^2+MB^2+2\overrightarrow{MA}.\overrightarrow{MB}=AM^2+BM^2+2\overrightarrow{AM}.\overrightarrow{MB}\)
\(\Leftrightarrow4\overrightarrow{MA}.\overrightarrow{MB}=0\Leftrightarrow\overrightarrow{MA}.\overrightarrow{MB}=0\)
\(\Leftrightarrow MA\perp MB\)