Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Lời giải:
$A=2x^2+y^2+2xy+2x-2y+2023$
$=(x^2+2xy+y^2)+x^2+2x-2y+2023$
$=(x+y)^2-2(x+y)+x^2+4x+2023$
$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$
$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$
$\Leftrightarrow x=-2; y=3$
Nhân cả 2 vế với 4, ta có:
4M = 4x2+4y2-4xy+8x-16y-8072
= [(4x2-4xy+y2)-2.(2x+y).2+4]+(3y2-12y+12)-8088
= [(2x-y)2-2.(2x-y).2+4]+3.(y2-4y+4)-8088
= (2x-y-2)2+3.(y-2)2-8088 >= -8088
=> M >= -2022
Dấu "=" xảy ra <=> 2x-y-2=0 và y-2=0
<=> x=y=2
Vậy GTNN của M = -2022 <=> x=y=2
Chúc bạn học tốt nha!
Ta có:
\(M=x^2-2x\left(y+1\right)+3y^2+2025\)
\(M=x^2-2\cdot x\cdot\left(y+1\right)+\left(y+1\right)^2+3y^2+2025-\left(y+1\right)^2\)
\(M=\left[x-\left(y+1\right)\right]^2+3y^2+2025-y^2-2y-1\)
\(M=\left(x-y-1\right)^2+2y^2-2y+2024\)
\(M=\left(x-y-1\right)^2+2\left(y-\dfrac{1}{2}\right)^2+\dfrac{4047}{2}\)
Mà: \(\left\{{}\begin{matrix}\left(x-y-1\right)^2\ge0\\2\left(y-\dfrac{1}{2}\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow M=\left(x-y-1\right)^2+2\left(y-\dfrac{1}{2}\right)^2+\dfrac{4047}{2}\ge\dfrac{4047}{2}\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-y-1=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}+1\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy GTNN của M là ....
Thiếu đề.