\(\frac{X-y}{4}=\frac{y-z}{5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì 5(y+z) = 3(x+z)

Suy ra (x+z) / 5 = (y+z) / 3 = (x+z-y-z) / 5-3 = (x-y) / 2

Suy ra (x+z) / 5 = (x-y) / 2 tương đương (x+z) / 10 = (x-y) / 4                               (1)

2(x+y) = 3(x+z)

Suy ra (x+z) / 2 = (x+y) / 3 = (x+z-x-y) / 2-3 = y-z

(x+z) / 2 = y-z

Tương đương (x+z) / 10 = (y-z) / 5                                                                      (2)

Từ (1) và (2) suy ra:

 \frac{(x - y)}{4}=\frac{(y-z)}{5}

20 tháng 11 2016

\(\frac{x+y+z+1}{x}=\frac{x+y+x+2}{y}=\frac{x+y+z-3}{z}=\frac{3x+3y+3z}{x+y+z}=3\Leftrightarrow x+y+z=1\)

\(\Leftrightarrow\frac{3}{2x}=\frac{5}{2y}=\frac{-5}{2z}=\frac{3}{2}\left(???\right)\)

12 tháng 10 2016

Ta có: 2.(x + y) = 5.(y + z) = 3.(x + z)

\(\Rightarrow\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(x+z\right)}{30}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}=\frac{\left(x+z\right)-\left(y+z\right)}{10-6}=\frac{\left(x+y\right)-\left(x+z\right)}{15-10}\)

                             \(=\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)

18 tháng 10 2016

bạn trả lời hay quáyeuyeuyeu

9 tháng 10 2015

Vì 5(y+z)=3(z+x) =>(x+z)/5=(y+z)/3=(x+z-y-z)/(5-3) = (x-y)/2

Ap dung tinh chat day ti so bang nhau ta co : 

Do đó (x+z)/5 = (x-y)/2 \(\Leftrightarrow\) (x+z)/10=(x-y)/4 (1)  

Ta lại có: 2(x+y)=3(z+x) \(\Rightarrow\) (x+z)/2=(x+y)/3=(x+z-x-y)/(2-3)=y-z

Ap dung tinh chat day ti so bang nhau ta co : 

Do đó (x+z)/2 = y-z \(\Leftrightarrow\) (x+z)/10=(y-z)/5 (2)  

Từ (1)(2) suy ra (x-y)/4=(y-z)/5

8 tháng 3 2020

Từ : \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

=> \(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

Ta có : \(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\left(1\right)\)

\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\left(2\right)\)

Vậy : ...

8 tháng 3 2020

\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=k\Rightarrow\hept{\begin{cases}x+y=15k\\y+z=6k\\z+x=10k\end{cases}\Rightarrow\hept{\begin{cases}x-y=4k\\y-z=5k\end{cases}\Rightarrow}\frac{x-y}{4}=\frac{y-z}{5}}\)

30 tháng 6 2017

\(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(z+x\right)\)

\(\Rightarrow\text{ }\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(z+x\right)}{30}\)

\(\Rightarrow\text{ }\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\text{ }\left(1\right)\)

\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\text{ }\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\text{ }\frac{y-z}{5}=\frac{x-y}{4}\)