Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)
Mà a + b + c = 3 \(\Rightarrow a=b=c=1\)
\(\Rightarrow M=1+2015+2020\)\(=4036\)
b) \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(\Rightarrow\left(x-y\right)\left(x^2+y^2\right)< \left(x+y\right)\left(x^2-y^2\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)-\left(x+y\right)\left(x-y\right)\left(x+y\right)< 0\)
\(\Leftrightarrow\left(x-y\right)\left[x^2+y^2-\left(x+y\right)\left(x+y\right)\right]< 0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-x^2-2xy-y^2\right)< 0\)
\(\Leftrightarrow-2xy\left(x-y\right)< 0\)
Có \(x>y\Rightarrow x-y>0\)
\(\Rightarrow-2xy< 0\)
\(\Leftrightarrow xy>0\)
TH1: \(\orbr{\begin{cases}x>0\\y>0\end{cases}}\)( thỏa mãn )
TH2:\(\orbr{\begin{cases}x< 0\\y< 0\end{cases}}\)( loại )
Vậy bđt được chứng minh