\(2^x=8^{y+1}\) và \(9^y=3^{x-9}\) \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

Ta có:

\(2^x=8^{y+1}\Rightarrow2^x=2^{3\left(y+1\right)}\Rightarrow x=3\left(y+1\right)\) (1)

\(9^y=3^{x-9}\Rightarrow3^{2y}=3^{x-9}\Rightarrow2y=x-9\) (2)

Thay (1) vào (2) ta có:

\(2y=3y+3-9\\ 2y=3y-6\\ 2y-3y=-6\\ -y=6\\ \Rightarrow y=6\)

Thay \(y=6\) vào \(2y=x-9\), ta có:

\(26=x-9\\ \Rightarrow x=26+9\\ \Rightarrow x=35\)

\(\Rightarrow x+y=6+35=41\)

Vậy: \(x+y=41\)

27 tháng 2 2017

Mình nhầm, xin lỗi

Chỗ mà thay y=6 vào 2y = x-9 á, đổi 26 = x - 9 thành: 2.6 = x - 9 nha! Phần còn lại mình nghĩ bạn tự tính cũng được :)

9 tháng 12 2016

\(2^x=2^{3\left(y+1\right)}\Rightarrow x=3y+3\)

\(3^{2y}\Rightarrow3^{x-9}\Rightarrow2y=x-9\Rightarrow x=2y+9\)

\(\Rightarrow3y+3=2y+9\Rightarrow y=6\Rightarrow x=21\Rightarrow x+y=27\)

9 tháng 12 2016

Ta có:\(2^x=8^{y+1}\Rightarrow2^x=2^{3\left(y+1\right)}\Rightarrow2^x=2^{3y+3}\Rightarrow x=3y+3\)

\(\Rightarrow9^y=3^{x-9}\Rightarrow3^{2y}=3^{3y+3-9}\Rightarrow3^{2y}=3^{3y-6}\Rightarrow2y=3y-6\)

\(\Rightarrow2y-3y=-6\Rightarrow-y=-6\Rightarrow y=6\)

\(\Rightarrow x=6\cdot3+3=21\)

\(\Rightarrow x+y=21+6=27\)

29 tháng 8 2017

\(2x=8^{\left(y+1\right)}=2^{3\left(y+1\right)}\Rightarrow x=3y+3\) ( 1 )

\(9y=3^{2y}=3^{x-9}\Rightarrow2y=x-9\) ( 2 )

\(x+2y=3y+3+x-9\)
\(y=6\)
\(x=3.6+3=21\)
\(\Rightarrow x+y=27\)

Nếu có j thì nói nha ( giúp thì nói t giải cho )

29 tháng 8 2017

Rồng Đỏ Bảo Lửa cảm ơn a nhìu nha ( hôm sau có j e nhờ a giải ) hehe

29 tháng 7 2017

\(\dfrac{x-2}{2}=\dfrac{y-4}{3}=\dfrac{z-8}{5}\)

\(\Rightarrow\dfrac{x-2}{2}+2=\dfrac{y-4}{3}+2=\dfrac{z-8}{5}+2\)

\(\Rightarrow\dfrac{x+2}{2}=\dfrac{y+2}{3}=\dfrac{z+2}{5}\)

\(\Rightarrow\left(\dfrac{x+2}{2}\right)^2=\left(\dfrac{y+2}{3}\right)^2=\left(\dfrac{z+2}{5}\right)^2\)

\(\Rightarrow\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}=\dfrac{3.\left(y+2\right)^2}{27}\dfrac{\left(x+2\right)^2+3\left(y+2\right)^2-\left(z+2\right)^2}{4+27-25}=\dfrac{24}{6}=4\)\(\Rightarrow\left\{{}\begin{matrix}\left(x+2\right)^2=16\\\left(y+2\right)^2=36\\\left(z+2\right)^2=100\end{matrix}\right.\)

Bạn chia trường hợp rồi tìm x,y,z nhé

a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)

hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)

d: =>x+1;x-2 khác dấu

Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)

Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)

e: =>x-2>0 hoặc x+2/3<0

=>x>2 hoặc x<-2/3

7 tháng 8 2016

Đặt:

\(\frac{x}{3}=\frac{y}{2}=k\)

\(\Rightarrow x=k.3\)

\(\Rightarrow y=k.2\)

Thế vào \(6xy=1\), ta có:

\(6.\left(k.3\right).\left(k.2\right)=1\)

\(6.k^2.6=1\)

\(6.k^2=\frac{1}{6}\)

\(k^2=\frac{1}{36}\)

\(\Rightarrow k=\frac{1}{6}\) hoặc \(-\frac{1}{6}\)

Rồi giờ tìm x ; y bạn từ làm nhá

7 tháng 8 2016

\(\frac{x}{3}=\frac{y}{2}\)

=> \(\frac{x^2}{3^2}=\frac{y^2}{2^2}=\frac{xy}{3.2}\)

=> \(\frac{x^2}{9}=\frac{y^2}{4}=\frac{6xy}{36}=\frac{1}{36}\)

=> x2 = 1.9 : 36 = \(\frac{1}{4}\) => \(x=\frac{1}{2}\) hoặc \(x=-\frac{1}{2}\)

7 tháng 9 2017

Ta có: 2x = 8y+1 => 2x = (23)y+1 => 2x = 23y+3 => x=3y+3

9y = 3x-9 => (32)y = 3x-9 => 32y = 3x-9 => 2y = x-9

Do x=3y+3 => 2y = 3y+3-9 => 2y=3y-6 => y=6

=> x = 3.6+3 = 18+3=21

=>x+y=21+6=27

7 tháng 9 2017

Ta có :

\(2^x=8^{y+1}\Rightarrow2^x=\left(2^3\right)^{y+1}\Rightarrow2^x=2^{3y+3}\Rightarrow x=3y+3\)

\(9^y=3^{x-9}\Rightarrow\left(3^2\right)^y=3^{x-9}\Rightarrow3^{2y}=3^{x-9}\Rightarrow2y=x-9\)

Do : \(3y+3\Rightarrow2y=3y+3-9\Rightarrow2y=3y-6\Rightarrow y=6\)

\(\Rightarrow3.6+3=18+3=21\)

\(\Rightarrow x+y=21+6=27\)